

DEPARTMENT OF COMPUTER SCIENCE AND TECHNOLOGY

"T3,EXAMINATION2017-2018"

Semester: 4th **Date of Exam:** 17/5/2018

Subject: TOC&CD **Subject Code:** CSH209-T

Branch: CSE **Session:** II

Course Type: CORE **Course Nature:** Hard

Time: 3 Hours **Program:** B.Tech

Max.Marks: 80 **Signature:** HOD/Associate HOD:

Note: All question are compulsory from Part A (2X 10=20Marks). Attempt any two questions from Part B (15 marks each). Attempt any two questions from Part C (15 marks each).

- 1 (a) What do you mean by Recursive Descent Parsing.
- (b) Give two differences between top down parser and bottom up parser.
- (c) What is an ambiguous grammar. Give example for the same
- (d) Discuss any two types of conflicts that occur while constructing an LR parser.
- (e) List down all the token and its types for string: printf("the value of x=%d",i)
- (f) Construct a parse tree for string (id+id*id) using grammar E->E+E|E*E|(E)|id
- (g) What is meant by operator grammar? Give an example.
- (h) Explain Synthesis attribute with example.
- (i) Explain Inherited attribute with example.
- (j) Define DAG

PART B

1. (a) Check if the following grammar is accepted by CLR parser. Support your answer with parsing table for the same.

S-> AA	10
A->aA b	

(b) Eliminate left factoring for the following grammar. 2.5

S->aAd aB	A->a ab	B->ccd ddc
-----------	---------	------------

(c) Eliminate left recursion for the following grammar. 2.5

S-> (L) a	L-> L, S	L-> S
-------------	----------	-------

2 (a) Construct a LL(1) parser table of the following grammar with the help of table(s) for FIRST() and FOLLOW(). Note: € represent null 10

E -> TE'
 E' -> +TE' | €
 T -> FT'
 T' -> *FT' | €
 F -> id | €

(b) Discuss all the phases of compiler that falls in analysis phase of compiler with suitable examples. 5

3(a) Construct a LR(0) parser for the following grammar and highlight the conflicts (if any) in the table. 10
 $S \rightarrow Aa \mid bAc \mid dc \mid bda$
 $A \rightarrow d$

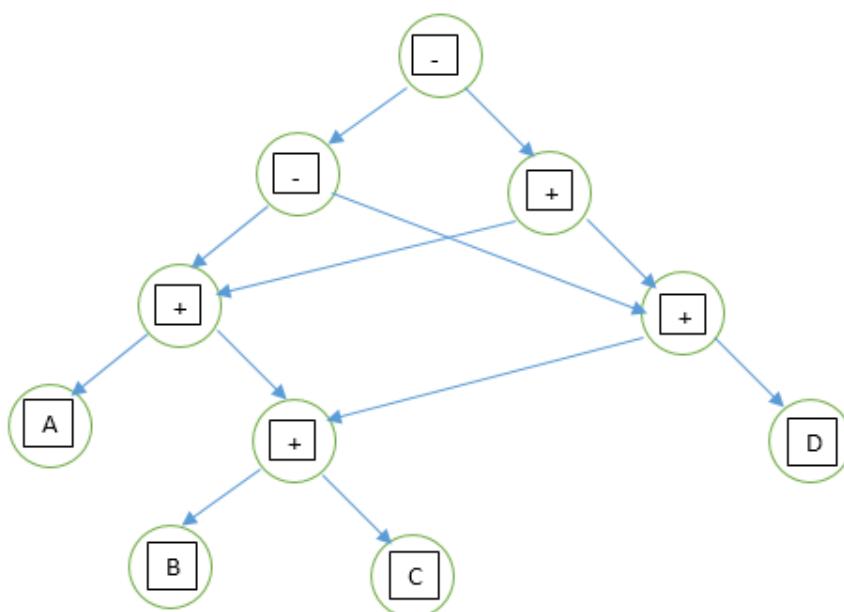
3(b) Give two differences between compiler and interpreter. Discuss all the phases of compiler that falls in synthesis phase of compiler with examples. 2+3

PART C

1.(a) Discuss following methods of code optimization along with suitable examples. 5*2=10
Strength Reduction, Dead Code Elimination, Constant Folding, Redundancy Elimination, Simplification

(b) Construct an SDT for input string: $2*3+4$ and determine the output for the same. 5

$S \rightarrow ER$
 $R \rightarrow *E \{ \text{printf}("*"); \} R$
 $| R$
 $E \rightarrow F+ E \{ \text{printf}("+"); \}$
 $| F$
 $F \rightarrow \text{num} \{ \text{printf}(\text{num.val}); \}$


2. (a) Represent input string $(a^*b)+(a^*b^*c)+(d/e^*f)$ with the help of syntax tree, directed acyclic graph, postfix notation and three address code. 4*2=8

(b) What do you understand by the term three address code? Also using $(a^*b)+(a^*b^*c)+(d/e^*f)$ as string construct the tables for Quadruples and Triples 1+2*3=7

3. (a) Discuss three methods of loop optimization. 3*2=6

(b) Write three address code for the following expression 4
If $a < b \ \&& \ c > d$ then $t = 1$ else $e = 0$

(c) Explain the concept of tokenization. Generate three address code from the following DAG where (-) represent minus sign and (+) represent addition sign 3+2

