

Shour
26/11

MANAV RACHNA
Vidya Gata Rakshak

Declared as State Private University under section 2f of the UGC act, 1956

MANAV RACHNA
UNIVERSITY

(FORMERLY MANAV RACHNA COLLEGE OF ENGINEERING
NAAC ACCREDITED 'A' GRADE INSTITUTION)

DEPARTMENT OF ECE

"T3 Examination, Dec 2018-19"

Semester: 3rd

Subject: PDE & Circuit Design

Branch: CSE

Course Type: CORE

Time: 3 hrs.

Max. Marks: 100

Date of Exam: 04/12/2018

Subject Code: ECH 207-T

Session: II

Course Nature: HARD

Program: B. TECH.

Signature: HOD/Associate HOD:

~~Note:~~

PART -A

Q1.

a. Draw the XNOR gate logic using minimum no. of NAND gates only. (3)
b. Reduce using mapping the following expression and implement the real minimal expression in universal logic. (7)

$$f = \sum m(0, 2, 4, 6, 7, 8, 10, 12, 13, 15)$$

$$\bar{A}B + A\bar{B}$$

OR

Q2.

a. Define the Fundamental Theorems of Boolean Algebra with example. (6)
b. Do the following: (4)
i. Convert $(678)_8 = (\dots)_{16}$
ii. Perform BCD addition of $(91+81)$

PART -B

Q3.

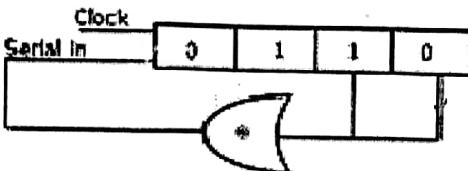
a. Implement the following function using 4*1 MUX (5)
 $f(abc) = ab + b'c$

OR

b. Explain the Priority encoder with Truth Table and Logic Diagram. (5)
Draw the neat and clean diagram of BCD adder. (5)

PART -C (Attempt any two)

Q4.


- a. Compare the Asynchronous and synchronous Counter. (5)
- b. Design a Synchronous BCD counter using J-K flip-flop. (15)

Q5.

- a. Compare the sequential and combinational circuits. (5)
- b. Explain the working of Universal register with diagram. (15)

Q6.

- a. Examine the values of following right shift register after 5 clock pulses. (5)

- b. What is the problem in JK flip-flop and how it can be removed, named it. (3)
- c. Conversion of D flip-flop to JK flip-flop. (12)

PART -D (Attempt any two)

Q7.

- a. Define the characteristics of logic family. (5)
- b. What are the advantages of PLD devices over fixed function ICs and ASICs. (5)
- c. Compare PROM, PLA, and PAL. (10)

Q8.

- a. Implement the following Boolean function using PAL with 4 inputs and 3-wide AND-OR structure. Also write the PAL programming Table. (12)

$$F1(A, B, C, D) = \sum m (2, 12, 13)$$

$$F2(A, B, C, D) = \sum m (7, 8, 9, 10, 11, 12, 13, 14, 15)$$

$$F3(A, B, C, D) = \sum m (0, 2, 3, 4, 5, 6, 7, 8, 10, 11, 15)$$

$$F4(A, B, C, D) = \sum m (1, 2, 8, 12, 13)$$

- b. Compare the following: (8)

DRAM and SRAM

RAM and ROM

Q9.

- a. Compare the ECL and TTL. (5)
- b. Implement the following two Boolean functions with a PLA: (7)

$$F1(A, B, C) = \sum m (0, 1, 2, 4)$$

$$F2(A, B, C) = \sum m (0, 5, 6, 7)$$

- c. Define the working of DTL with neat and clean circuit diagram. (8)
