

DEPARTMENT OF ELECTRONICS & COMMUNICATION

"T1 Examination, AUG-2018"

Semester: 3rd

Subject: Principles of Digital Electronics & Ckt. Design

Branch: ECE/CSE

Course Type: Core

Time: 90 Minutes

Program: B.Tech

Date of Exam: 04/09/18

Subject Code: ECH207-T

Session: II

Course Nature: Hard

Max. Marks: 30

Signature: HOD/Associate HOD:

Note: Part A: All questions are compulsory. Each Question carries 2 marks. Part B: Attempt any two questions. Each Question carries 10 marks.

PART-A

Q1. a) Convert $(3FA7)_{16}$ in to equivalent decimal & octal numbers.
 b) Write the next three numbers in the octal sequence: - 624, 625, 626, _____.
 c) Add -75 to +26 using the 8-bit 2's complement arithmetic.
 d) Perform the following conversions.
 i. $(0.625)_{10} = (?)_2$
 ii. $(1100.1011)_2 = (?)_{10}$
 e) Solve the given Boolean equation using Demorgan's theorem. $A\bar{B} + \bar{B}\bar{C} + \bar{C}\bar{D}$

PART-B

Q2. a) Show that $A\bar{B}C + B + B\bar{D} + A\bar{B}\bar{D} + \bar{A}C = B + C$ using Boolean algebra. [5]
 b) Minimize the following expression using k-map and implement the expression using basic gates. [5]
 $Y = \pi M (2, 8, 9, 10, 11, 12, 14)$

Q3. a) The message below coded in 7-bit Hamming code is transmitted through a noisy channel. Decode the message assuming that at most a single error occurred in each code word. [6]

1.) 1110110
 2.) 1110101.

b) Perform the following operations. [4]
 i. 1101 Gray code to Binary.
 ii. Excess-3 code for 1101.
 iii. Binary multiplication $101.11 * 111.01$
 iv. Divide $(1111000)_2$ by $(100)_2$

Q4. a) Perform the following operations. [2+2]
 1. Subtract $(36)_{10}$ and $(24)_{10}$ by converting them in to binary.
 2. Find the signed magnitude representation for (-27) .

b) Minimize the following expression using k-map [6]
 $y = \sum m (0, 1, 5, 9, 13, 14, 15) + d (3, 4, 7, 10, 11)$
