14.5 Symmetric Multiprocessors

A special case of multiprocessors are the symmetric mult?proccssors where
the processors are of same type and all processors’ the main memory access
time is the same. In an asymmetric multiprocessor, different processors have
different capabilities. Asymmetric multiprocessors are common in embedded
systems in which several specialized processors for tasks. such as digital
signal processing and media processing, are required. On the other hand,
symmetric multiprocessors (SMPs) are very popular in desktop, laptop,
and workstations. In an SMP a process can run equally well on any of the
processors.

A schematic diagram of an SMP is shown in Fig. 14.12. As can be seen
that the processors are connected to each other as well as to the memory and
the I/0 system through a bus. Each processor has its local cache. It can be
seen from Fig 14.12, that the main memory needs to meet the demand from
a large number of processors. Even in a single-processor system, the pro-
cessor gets stalled on account of memory latency. In a multiprocessor, this
situation is exacerbated. One Wway to overcome the demand on the processor
Is by having an effective cache memory with the processors. An effective
cache memory that is able to meet most of the demand of the processors is
obtained by using a multilevel cache memory. Consequently, in almost every
multiprocessor system the processors are designed with multilevel caches. In

Cache Cache Cache Cache

L | | | i Bus

Main memory UO system ]

FIGURE 14.12 » schematic diagram
of an SMP
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the fallowing, We quantitatively show the effectiveness of mulilevel caches
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in redicing thie demand an Lhe fll'\.i?]’._};‘,‘ by the processors

Fanmple 14.1: Consider an ¢ight processor SMP. Each provessor s designed
{ with a three-level private cache system. Each cache is effective in meeting

Yty of the demiand on it and misses 1% of the demand. Determine the load
on the memory with and without the cache system, assuming that each pro-
Lessor gf:li-:i-;ilk:": ffl" l'cjt{ijcsr_ an IEII: memory C\'i:f)" bt:';"\)!ld.

Solutlon: The miss rate of cach cache is 10%. The miss rate of the three-level
cache system s 10% » 1G% = (0% = 1073

The demand on the memory from each processor is 10° x 1072 = 100.

The demand on the memory due to all the processors = 8 * 100 = 800
Without the cache system, the demand on the memory = 8 x 10° = 800,000
Therefore, with the cache system, the demand on the memory is 1,000 times
less,

“Evolution of SMPs: [n the 1980s, each processor of an SMP and its asso-
" cinted 1Cs were mounted on a PCB (printed circuit board). Each processor
board as well as the memaory and the VO system were connected to the back-
plane bus, In the 19905 the different processors were mounted on a single
PPCB, In this processor, each processor is termed as a processor core. Since
about the year 2000, the different processors exist on a single physical pack-
aging. Existence of multiple cores on a single semiconductor chip does not
mein that the bus length has shrunk tremendously over the years; from about
a meter to a fraction of a millimeter. On a short bus, very high rate of data
transmission is possible. Therefore, the different cores can communicate very
fast and running fine-grained parallel programs on the multicore computer
becomes possible. Due to the shrinking size and cost and significantly higher
performance, multicore processors are now commonly found in every desk-
top, laptop, and server computer.

Advantages of Multicore Processors: One of the major advantages of the

multicore processors is case of programming. As the different cores can

elfectively share memory area, they can share variables and therefore writing
programs to run on the different cores is a simple extension of the programs
on single-processor systems. The other major advantage of the multicore
processors is power management. When any of the cores is idle, the power to
it gets automatically switched off thereby saving power,

Disadvantages of Multicore Processors: A major shortcoming of the mul-
ticore architecture is its limited scalability. As the number of processors
increases, contention for the bus increases. Therefore, with about 16 cores or
80, there is serious performance degradation on this count. One way 1o over-
come the degradation of the processor performance due to contention for the
Interconnect is to use a crossbar switch or a multistage switching network.
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14.6 Cache Coherence
The operation ol cache memory is explained in See. 12.0. The Primary
reduce the average aceess time in UNipro-

a4 word in cache during a read operatioy,
. . " s

(he main memory is not involved in the transfer. 11 the operation 1s 1o wriye,

there are two commonly used procedures 10 update memory. In the wrige.
are updated with every write

advantage of cache is its ability (o
cessors. When the processor finds

through policy, both cache and main memory
operation. In the write-back policy, only the cache is updated and the location
is marked so that it can be copied later into main memory.

In a shared memory multiprocessor system, all the processors share g
common memory. In addition, cach processor may have a local memory, part
all of which may be a cache. The compelling reason for having scparate

or
¢ average access time in cach proces-

caches for cach processor is to reduce th
sor. The same information may reside in a number of copics in some caches
and main memory. To ensure the ability of the system to execute memory
operations correctly, the multiple copics must be kept identical. This require-
ment imposes a cache coherence problem. A memory scheme is coherent
i the value returned on a load instruction is always the value given by the
latest store instruction with the same address. Without a proper solution to
the cache coherence problem, caching cannot be used in bus-oriented multi-

processors with two or more processors.

Conditions for Incoherence

Cache coherence problems exist in multiprocessors with private caches
because of the need to share writable data. Read-only data can safely be
replicated without cache coherence enforcement mechanisms. To illustrate
the problem, consider the three-processor confi guration with private caches
shown in Fig. 14.13. Sometime during the operation an element X from
main memory is loaded into the three processors, P, P, and P5. As a con-
sequence, it is also copied into the private caches of the three processors.
For simplicity, we assume that X" contains the value of 52. The load on X
to the three processors results in consistent copies in the caches and main
memory.

If one of the processors performs a store to X, the copies of X in the
caches become inconsistent. A load by the other processors will not return
the latest value. Depending on the memory update policy used in the cache,
the main memory may also be inconsistent with respect to the cache. This
is shown in Fig. 14.14. A store to X (of the value of 120) into the cache of
processor P; updates memory to the new value in a write-through policy. A
write-through policy maintains consistency between memory and the orig-
inating cache, but the other two caches are inconsistent since they still hold
the old value. In a write-back policy, main memory is not updated at the time
of the store. The copies in the other two caches and main memory are incon-
sistent. Memory is updated eventually when the modified data in the cache
are copied back into memory.
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FIGURE 14.13  Cache configuration after a load on £,
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() With write-through cache policy
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A=52 X=52 Caches

P, P, Processors

(b) With write-back cache policy

FIGURE 14.14 Cache configuration after a store to X by processor Pis
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Solutions to the Cache Coherence Problem

\larious schemes have been proposed to solve the ‘-'”‘Jll“—' coherence projep,
in shared memory multiprocessors. We discuss some of icsc schemes hriuﬂy
here. Sce references 3 and 10 for more detailed discussions,

A simple scheme is to disallow private caches for cach processor g
have a shared cache memory associated with main memory. Every datg
access is made to the shared cache. This method violates the principle of
closeness of CPU to cache and increases the average memory access time, |
effect. this scheme solves the problem by avoiding it.

For performance considerations it is desirable to attach a private cache
to cach processor. One scheme that has been used allows only nonshared ang
read-only data to be stored in caches. Such items are called cachable. Shareq
writable data are noncachable. The compiler must tag data as either cachable
or noncachable, and the system hardware makes sure that only cachable data
are stored in caches. The noncachable data remain in main memory. This
method restricts the type of data stored in caches and introduces an extra
software overhead that may degradate performance.

A scheme that allows writable data to exist in at lcast one cache is a
method that employs a centralized global table in its compiler. The status of
memory blocks is stored in the central global table. Each block is identified
as read-only (RO) or read and write ( RW). All caches can have copies of
blocks identified as RO. Only one cache can have a copy of an RW block.
Thus if the data are updated in the cache with an RW block, the other caches

are not affected because they do not have a copy of this block.

The cache coherence problem can be solved by means of a combination
of software and hardware or by means of hardware-only schemes. The two
methods mentioned previously use software-based procedures that require the
ability to tag information in order to disable caching of shared writable data.
Hardware-only solutions are handled by the hardware automatically and have
the a-dvantagc of higher speed and program transparency. In the hardware
solution, the E:achc controller i specially designed to allow it to monitor all
bus requests from CPUs and 10Ps, Al caches attached to the bus constantly
monitor the network f(.)r possible write operations. Depending on the method

used, thcy must then rc‘lthcr update or invalidate their own cache copies when
tlo T;llrl:,:.;(;{;ttt;lr/(:i :::;nl::;;:o}]];m”cr th‘:'n monitors this actign is. ML:{:S
maintain a bus-watching mcchf; is 1s basically a hardware unit designe
amism over all the caches attached to the bus.
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14.6 Cache Coherence 663
v

arious schemes have been propose

d 1o solve the cache coherence
problem by means

. ol snoopy cache protocol, The simplest method 15 1o adopt
awrite-through policy and use the follow

g procedure, All the snoopy con-
trollers watch the bus for me

: mory store operations, When a word ina cache
is updated by writing into it. the corresponding location in maim memory
s also updated. The Tocal snoopy controllers in all other caches check their
memory to determine if they have
wrtten. I a copy exists in a remot
Because all caches snoop on all |t
the net effect iy

a copy of the word that has been over-
¢ cache, that location is marked mvalid,
s writes, whenever a word is written,
to update it in the original cache and main memory and
remove it from all other caches. If at some future time a processor accesses
the invalid item from its cache, the response is equivalent to a cache miss,
11}1(1 the updated item is transferred from main memory, In this way, incon-
s1stent versions are prevented.

In another variant of the snoopy cache coherence protocol, whenever
A processor writes to a block in a write through scheme, the cache control-
lers at all processors match the address to check if they have a copy of the
block. If they have a copy of the block, then they update the Jocal cache,
Thus, in this scheme in addition to the memory, all the caches having a
copy of the block update the concerned block. Therefore, after any update
to a block by a processor, the other processors when they read the same
block, read the updated values. In a write back scheme, when a Processor
writes to a block, writing of the block to the memory is disabled, and only
the local caches at the processors having a copy of the block are updated.
This scheme is called snoopy write-update protocol.

Comparison of the Snoopy Update Scheme with the Invalidate Scheme:
The snoopy write-update protocol is more efficient than the write invali-
date scheme, when different processors frequently read and write to the
same cache block. This 1s so, because in the invalidate scheme, when any
of the processors writes to a cache block, all other processors having a
copy of the block invalidate their local copies. But, when they need to
read, the block has to be fetched, incurring bus overhead and also. in the
process, increasing the bus traffic. On the other hand, if one of the pro-
cessors updates a cache block frequently and the other processors do not
perform any read and write on the s:mlu: blf)ck in the meanwhile, then the
update operations are wasted and the invalidate scheme would work more
efficiently.

True and False Sharing: In the snoopy protocols, the cache controllers
monitor the bus at the block level. Therefore, even when two processors read
and write to disjoint addresses in a data block, still the vuhdaul(m or updulc
activities take placc. When two or more pr()ccssur:? rcad or write to cxagll;.'.
the same addresses in a block, it is called true shurm'g,: On the u!hcr hi.l{‘ld., if
they read and write to disjoint addresses in a block, it is called false sharing
of the block.
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13.4 Associative Memory

Many data-processing applications require the search of items u
ddress 2

stored in memory. An assembler program searches the symbol add

be searched in a file to determine the holders name and account status.

The established way to search a table is to store all items where they
be addressed in sequence. The search procedure is a strategy for choosing
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sequence of addresses. reading the content of memory at each address, a

[

]
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o |
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comparing the information read with the item being searched until 2 march
occurs. The number of accesses to memory depends on the
and the efficiency of the search algorithm. Many search algor

=
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location of the
1 1

ithms have

item
been developed to minimize the number of accesses while
item in a random or sequential aCCess memory.
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The time required to find an itetn stored in memory can be redygesg
¢ i ‘| y e & » by o s .

considerably 1 stored data can be identified for access by the content of e
nsndeimk ) PR R ; "
datn itsell vather than by an address A memory unit accessed by conten iy
i Ly s . — ) -y .
ealled an assoviative memaorn: or content addressable memory (CAM) Thig
i i i ?

csed simultancously and 1n parallel on the basis of

fvpe of memory is acee , et ;
| pecific address or location. When a waord is wrie.

data content rather than by s _ : . L ‘
ten in an pssociative memory, ne address 1s given. The memory is capable

ol lindine an empty unused location to store tl‘h:: word. When a um:fi 18 to by
read !'mn} an associative memory, the content of the word. or p:irllnt the wird,
i specified. The memory locates all words which match the specified contene
and marks thom for reading. ‘ |

Necause of its organization, the associative memory 1s uniquely suited
to do parallel scarches by data assoctation. Moreover, scnrchc_; can be done
on an entive word or on a specific field within a word. An associative memory
is more expensive than a random access memory because c.:m:h cell must have
storage capability as well as logic circuits for matching its content with an
external ateument. For this reason, associative memories are used in applica-
tions where the search time is very critical and must be very short,

Hardware Organization

The block diagram of an associative memory is shown in Fig. 13.13. It consists
of o memory array and logic for 7 words with n bits per word. The argument
register 4 and key register K cach have a bits, one for each bit of a word. The
match register M has m bits, one for each memory word. Each word in memory

Argument register ()

Y

Key register (K)

Martch
. register
Input ——»
Associative memory
array and logic
» M
Read : m words
Write > n bits per word
Output

FIGURE 13.13  Block diagram of associative memory.
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13.4  Associative Memory 497

i compared i parallel with the content of the argument register, The words
that mateh the bits of the argument register set a corresponding bit in the match
register., \ “&fl' the matching process, those bits in the match register that have
l\‘ccn set 1‘mhv:nc 1|1c. fact that their corresponding words have been matched.
Reading is accomplished by a sequential access to memory for those words
whose corresponding bits in the mateh register have been set.

~The Key vegister provides a mask for choosing a particular field or
Key in the argument word. The entive argument is compared with each
111;‘113nr}’ word it the key register contains all 1. Otherwise, only those
h\t:el in the argument that have s in their corresponding position of the key
register are compared. Thus the key provides a mask or identifying picce
of information which specities how the reference to memory is made. To
tllustrate with a numerical example, suppose that the argument register 4
and the key register A have the bit configuration shown below. Only the
three leftmost bits of A are compared with memory words because K has
1's in these positions.

A 101 111100
N 111 000000
Word 1 100 111100 no match

Word 2 101 000001  match
Word 2 matches the unmasked argument field because the three leftmost bits
of the argument and the word are equal.

Y L
‘_K‘ £ K
Y Y A
-
word1 || €, ) c. | M, ’
f e}
wordi | [ €, G c |L»

Wordm | | C,, e FCMJ » L_Mm \

Bit 1 Bit j Bit n

FIGURE 13.14 Associative memory of m word, n cells per word.
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498 Memory Organization

The relation between the memory array and external regigge
associative memory is shown in Fig. 13.14. The cells in the array are
by the letter C with two suberipts. The first subscript gives the worg Numbyey
and the second specifies the bit position in the word. Thus cell Ciy s the cu]l1
for bit j in word i. A bit .4, in the argument register is compared witly all e
bits in column j of the array provided that A= 1. This is done for y1| colunyg
J= 1.2, ..., n If a match occurs between all the unmasked bits of (e :u'gu;
ment and the bits in word 7, the corresponding bit M, in the mateh register i
set to 1. If one or more unmasked bits of the argument and the word ¢, nuhl
match, M, is cleared to 0.

The internal organization of a typical cell C,; 1s shown in Fig, 13 5.1
consists of a flip-flop storage element Fff and the circuits for reading, Writing,
and matching the cell. The input bit is transferred into the storage cell duril;u
a write operation. The bit stored is read out during a read operation, The
match logic compares the content of the storage cell with the corresponding
unmasked bit of the argument and provides an output for the decision logi:;
that sets the bit in M,

S gy
Markeq

Match Logic

The match logic for each word can be derived from the comparison aloo.
rithm for two binary numbers. First, we negleet the key bits and compare :hu
argument in 4 with the bits stored in the cells of the words. Word 7 is equal
to the argument in A if A= F,-f- forj=1, 2, ..., n Two bits arc equal if they
are both 1 or both 0. The equality of two bits can be expressed logically by
the Boolean function

x, = AF,+AF

where ;= I if the pair of bits in position j are cqual; otherwise, X = 0.

A4 K
Input
Write T I
R S
F TMFF —»To M,
Read f% ——»| l08IC
Output T

FIGURE 13.15 One cell of associative memory.
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134 Associative Memory 498

For a word i 10 be equal to the argument in A we must have all x;
variables equal to 1, This is the condition for setting the corresponding match
bit A 1o 1 The Boolean function for this condition is

i i

M= X, Xy %y ... %,
and constitutes the AND operation of all pairs of matched bits in a word.

We now include the key bit K; in the comparison logic. The require-
ment is that if K, = 0, the corresponding bits of A; and F; need no compari-
son. Only when K, = 1 must they be compared. This requirement is achieved
by ORing cach term with K7 thus:

x, ifK, =1
Xyd f\': -'-'-J ! !
|1 ifK,=0

When K = 1, we have K = 0 and x; + 0 = x;. When K;=0,then K =1 and
xp+ 1= 1A term (x; + K)) will be in the 1 state if its pair of bits is not
compared. This 1s necessary because each term is ANDed with all other
terms so that an output of 1 will have no effect. The comparison of the bits
has an effect only when K; = 1.

The match logic for word i in an associative memory can now be
expressed by the following Boolean function:

M, (54 Ko1)o ), )

Each term in the expression will be equal to 1 if its corresponding K; = 0. If
K:= 1, the term will be either 0 or | depending on the value of x;. A match
will occur and M; will be equal to 1 if all terms are equal to 1.

If we substitute the original definition of x;, the Boolean function above

can be expressed as follows:

M, =T1(4,F, + 4 F +K;)

j=l

where I is a product symbol designating the AND operation of all # terms.
We need m such functions, onc for each word i = 1,2,3,....m.

The circuit for matching one word is shown n Fig. 13.16. Each cell
requires two AND gates and one OR gate. The n'wc_rlcrs for A. an’d‘ A ;are
needed once for cach column and are uscd for all bits in the column, The out-
put of all OR gates in the cells of the same word go to the input of a cmunm:\

' conal for M. . M, will be logic 1 if a match
AND gate to generate the match signal for ;. M; will hL 103 s
occurs and 0 if no match oceurs. Note that if the key register Conams: A s,
output M, will be a 1 irrespective of the value of 4 or the word. This occur-
i

rence must be avoided during normal operation.
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FIGURE 13.16 Match logic for one word of associative memory.

.

Read Operation

If more than one word in memory matches the unmasked argument field,
all the matched words will have 15 in the corresponding bit position of the
match register. [t is then necessary to scan the bits of the match register one
at a time. The matched words are read in sequence by applying a read signal
to each word line whose corresponding M, bitisa 1.

In most applications, the associative memory stores a table with no two
identical items under a given key. In this case, only one word may match the
unmasked argument field. By connecting output M. directly to the read line in
the same word position (instead of the M register), the content of the matched
word will be presented automatically at the output lines and no special read
command signal is needed. Furthermore, if we exclude words having a zero
content, an all-zero output will indicate that no match occurred and that the
searched item 1s not available in memory.

Write Operation

An associative memory must have a write capability for storing the infor- :
mation to be searched. Writing in an associative memory can take different
forms, depending on the application. If the entire memory is loaded with
new information at once prior to a search operation then the writing can be
done by addressing each location in sequence. This will make the device @
random-access memory for writing and a content addressable memory for
reading. The advantage here is that the address for input can be decoded as -
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13,5 Cache Memory 501

ina runclnm‘-ncccss memory. Thus instead of having m address lines, one for
each word in memory, the number of address lines can be reduced by the
decoder to d lines, where m = 24,

It um-'umed words have to be deleted and new words inserted one at a
i insus e ncgd for.ﬂ special register o distinguish between active and
inactive words. This register, sometimes called
many bits as there are words in the memory, For every active word stored in
memory, the corresponding bit in the tag register is sct to 1, A word is deleted
from memory by clearing its tag bit to 0. Words gre sto:l'cd in memory by
scanning the tag register until the first 0 bit ig encountered. This gives the
first available inactive word and a position for writing a new word. After the
new word is stored in memory it is made active by setting its tag bit to 1. An
unwanted word when deleted from memory can be cleared to all 0's if this
value is used to specify an empty location. Moreover, the words that have
: a tag bit of 0 must be masked (together with the X bits) with the aréumcnl

P , word so that only active words are compared, /

a tag register, would have as

“43.5 Cache Memory - .

Analysis of a large number of typical programs has shown that the references

to memory at any given interval of time tend to be confined within a few

localized areas in memory. This phenomenon is known as the property of
locality of reference. The reason for this property may be understood consid- locality of reference
ering that a typical computer program flows in a straight-line fashion with
program loops and subroutine calls encountered frequently. When a program
loop is executed, the CPU repeatedly refers to the set of instructions in mem-
ory that constitute the loop. Every time a given subroutine_is called, its set
of instructions are fetched from memory. Thus loops and subroutines tend
to IUCWrences to memory for fetching instructions. To-a lesser
degree, memory references to data also tend to be localized. Table-lookup
procedures repeatedly refer to that portion in memory where the table is
stored. Iterative procedures refer to common memory locations and array
of numbers are confined within a local portion of memory. The result of all
these observations is the locality of reference property, which states that over
a short interval of time, the addresses generated by a typical program refer to
a few localized areas of memory repeatedly, while the remainder of memory
is accessed relatively infrequently.

If the active portions of the program and data are placed in a fast small
memory, the average memory access time can be reduced, thus reducing the
total execution time of the program. Such a fast small memory is referred
to as a cache memory. It is placed between the CPU and main memory as
illustrated in Fig. 13.1. The cache memory access time is less than the access
time of main memory by a factor of 5 to 10. The cache is the fastest compo-
nent in the memory hierarchy and approaches the speed of CPU components.

The fundamental idea of cache organization is that by keeping the
most frequently accessed instructions and data in the fast cache memory,
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hit ratio

mapping

] approach the access time of the cugye

access time wil
on of the size of main memgr,
N, &

is only a small fracts
ests will be found in the fast cache memgy,

the average memory
Although the cache
laree fraction of memory requ
because of the locality of reference property of programs. A

The basic operation of the cache is as follows. When the CPU nesds 1
access memory. the cache is examined. If the word is found m the cache, 1
is read from the fast memory. If the word addrcsged b} the CPU 15 now f'f]u:;ﬂ,
in the cache. the main memory is accessed to read the word. A block py
words containing the one just ac is then transferred from mai mer i
ory to cache memory. The block size may vary from one word (the one jus
accessed) to about 16 words adjacent to the one just accessed. In this manner,

Sl alarl

cessed

SRR R

some data are transferred to cache so that future references to memory fing i
the required words in the fast cache memory. |
1e performance of cache memory 1s frequently measured in 1erms :
of a quantity called hit ratio. ; Trefers 1o memory and finds !
the word in cache iU 1s said to produce a /ur. 11 the word 15 1ot found
-cache. it is in main memory and 1t counts as a 7133 The ratio of the number |
1C.. ! 1he ratid umbey |
™ c

of hits divided by The total CPU references 10 memory (hits plus misses) '1
-is the hit r‘ati(}i'ﬂl‘ém—ﬁmﬁ'rcd experimentally by rurming ‘
ograms in the computer and measuring the number o its i
al of time. Hit ratios of 0.9 and higher have |
es the validity of the locality of reference

“representative pr
and misses during a given nter
been reported. This high ratio verifi
property.

The average memory
improved considerably by use of aca
that most of the time the CPU accesse
the average access time is closer to the ac
For example, a computer with cache access time of 100 ns. a main memory

access time of 1000 ns, and a hit ratio of 0.9 produces an average access time
CT with-

of 200 ns. This is a considerable improvement over 2 similar compute
out a cache memory, whose access time is 1000 ns.

The basic characteristic of cache memory is its fast access time. There- =
¢ or no time must be wasted when searching for words mthe
ache memory s
re of

LRI

access time of a computer system can be
che. If the hit ratio is high enough so
s the cache instead of main memory,
cess time of the fast cache memory.

fore, very littl
cache. The transformation of data from main memory 0 ¢
referred to as a mapping process. Three types of mapping procedures a

practical interest when considering the organization of cache memarny: %

|. Associative mapping
Direct mapping
3. Set-associative mapping : --_.--i;"

{2

To help in the discussion of these three mapping procedures we will ase 3
The maif

specific example of a memory organization as shown in Fig. 13.17.1 _
memory can store 32K words of 12 bits each. The cache is capable of stormE
512 of these words at any given time. For every word stored in cache. there S
a duplicate copy in main memory. The CPU communicates with both e
ries. It first sends a 15-bit address to cache. If there is a hit, the CPU acﬂﬂi‘b
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MWain memiory Ntk i
2K » |2 1 CPu |
Cache memory | l

512712 !L"’f ,:'

- S SN SRS———

FIGURE 13.17 Example of cache memory.
the 12-bit data from cache, If there i a miss, the CPU reads the word from
main memory and the word is then transferred to cache.

Associative Mapping

The fastest and most flexible cache organization uses an associative mem-
ory. This organization is illustrated in Fig. 13.18. The associative memory
stores both the address and content (data) of the memory word. This permits
any location in cache to store any word from main memory. The diagram
shows three words presently stored in the cache. The address value of 15 bits
is shown as a five-digit octal number and its corresponding 12-bit word is
shown as a four-digit octal number. A CPU address of 15 bits is placed in
the argument register and the associative memory is searched for a matching
address. If the address is found, the corresponding 12-bit data is read and sent
to the CPU. If no match occurs, the main memory is accessed for the word.
The address-data pair is then transferred to the associative cache memory. If
the cache is full, an address-data pair must be displaced to make room for a
pair that is needed and not presently in the cache. The decision as to what pair
is replaced is determined from the replacement algorithm that the designer

CPU address (15 bits)

|

Y
Argument register J

<—— Address =§< Data :i
01000 ' 3450
027177 6710
22345 1234

FIGURE 13.18 Associative mapping cache (all numbers in octal),

Cache Memory 503
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tag field

chooses for the cache. A simple procedure is to replace cells of the ¢ielye in
round-robin order whenever a new word is requested from main memopy,
This constitutes a first-in first-out (FIFO) replacement policy.

Direct Mapping

Associative memories are expensive compared to random-access memorieg
because of the added logic associated with cach cell. The possibility of ugjyg
a random-access memory for the cache is imvestigated in Fig. 13,19,
CPU address of 15 bits is divided into two ficlds. The nine least significay,
bits constitute the index field and the remaining six bits form the rag fielq.
The figure shows that main memory needs an address that includes both the
tag and the index bits. The number of bits in the index field is equal (o the
number of address bits required to access the cache memory,

In the general case, there are 2% words in cache memory and 2" wordg
in main memory. The #-bit MEATOTY sis divided into two ficlds & bits
for the index field and # = k bits for the tag-field: The dircct mapping cache
organization uses theor=bit-addressto-aecess the main memory and the k-bit
index to access the cache. The internal organization of the words in the cache
memory is as shown in Fig. 13.20(b). Each word in cache consists of the data
word and its associated tag. When a new word is first brought into the cache,
the tag bits are stored alongside the data bits. When the CPU generates a
memory request, the index field is used for the address to access the cache.
The tag field of the CPU address is compared with the tag in the word read
from the cache. If the two tags match, there is a hit and the desired data word
is in cache. If there is no match, there is a miss and the required word is read
from main memory. It is then stored in the cache together with the new tag,
replacing the previous value. The disadvantage of direct mapping is that the
hit ratio can drop considerably if two or more words whose addresses have
the same index but different tags are accessed repeatedly. However, this pos-
sibility is minimized by the fact that such words are relatively far apart in the
address range (multiples of 512 locations in this example.)

6 bits 9 bits
Tag Index

Ny R

o 32K X 12 000 512X 12
Octal Cache memory L
Octal Main memory address Address =9 bits
address Data = 12 bits
Address = 15 bits 777
Y Data = 12 bits
77 1T
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address

QOO

00777

01000

0T77

02000

02777

Memory data

[ 122 l‘r_ o

2340

R

2430

4300

S070

6710

(a) Main memory

Index
address

000

777

13.5 Cache Memory 505

Tug Data
S
00 1220
02 6710
-

(b) Cache memory

FIGURE 13.20 Direct mapping cache organization.

To see how the direct-mapping organization operates, consider the
numerical example shown in Fig. 13.20. The word at address zero is pres-
ently stored in the cache (index = 000, tag = 00, data = 1220). Supposc that
the CPU now wants to access the word at address 02000. The index address
is 000, so it is used to access the cache. The two tags are then compared. The

Block 0

Block |

Block 63

'FIGURE 13.21

Index  Tag Data 6 6 3
000 01 J450 Tag Block Word
007 01 6578 ~~ of

Index

010

017

| |

i | ;
| | |
I |
' |
|
| |

770 02

i 02 6710

Direct mapping cache with block size of 8 words.

Scanned by CamScanner



Sia

Memory Qrganization

el Yo e CITEERG N L
E il el R

Cwhich does not produce 4 it
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y ¥
cache tag s 00 but the address tag s 0. _
\llht the l!s”:l \\\TI'II '\r.'.’u is

Therefore, the main memoty is aceessed _ rans.
ferred 1o the CPLUL The cache word at clex addvess Q00 s then replyeeg Witly
atag of 02 and data of 3670 _

The direct-mapping example just lh—-{f[”‘l'l.ll tm'j a block sise of unk
word. The same organization but using a block size oF 8 words iy shoyy, in
Fig. 13.21. The indl‘x field is now divided into two parts: the block fiey and
{]1:- word field. In a 31 2-word cache there are o-1 blocks ot 8 wWords cach
since 64 ~ 8§ = 512, The block number is spectiicd with o o-bu tield :iihi
the word within the block is specified with a 3-bit field. The tag ield stypeq
within the cache is common to all eight words of the same block. Every e
a miss oceurs, an entire block ot eight words must be transterred from pygig
memory to cache memory. Although this takes extra time, the hit ritio wij)
most lil-\'cl_\' improve with a larger block size because of the sequential natype

of computer programs.

Set-Associative Mapping

It was mentioned previously that the disadvantage of direct mapping is that
two words with the same index in their address but with different tay val-
ues cannot reside in cache memory at the same time. A third type of cache
organization, called set-associative mapping, is an improvement over the
direct-mapping organization in that each word of cache can store two or more
words of memory under the same index address. Each data word is stored
together with its tag and the number of tag-data items in one word of cache
is said to form a set. An example of a set-associative cache organization for
a set size of two is shown in Fig. 13.22. Each index address refers to two
data words and their associated tags. Each tag requires six bits and each data
word has 12 bits, so the word length 1s 2(6 + 12) = 306 bits. An index address
of nine bits can accommodate 512 words. Thus the size of cache memory is
512 x 36. It can accommodate 1024 words of main memory since cach word
of cache contains two data words. In general, a set-associative cache of set
size & will accommodate & words of main memory in cach word of cache.
The octal numbers listed in Fig. 13.22 are with reference to the main
memory contents illustrated in Fig. 13.20(a). The words stored at addresses
01000 and 02000 of main memory are stored in cache memory at index
address 000. Similarly, the words at addresses 02777 and 00777 are stored
in cache at index address 777. When the CPU generates a memory request,
the index value of the address is used to access the cache. The tag field ol
the CPU address is then compared with both tags in the cache to determine
if a match occurs. The comparison logic is done by an associative scarch 0
the tags in the set similar to an associative memory scarch: thus the name
“set-associative.” The hit ratio will improve as the set size increases becau
more words with the same index but different tags can reside in ch_h__
However, an increase in the set size increases the nuhmhcr of bits In ‘-"f"!ﬁ.s..o“
cache and requires more complex comparison logic.
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Index g Data Tay Data
OG0 | 01 3450 02 SpTu
S SRl S RN {1 |,
|
997 02 6710 00 2340

FIGURE 13.22 Two-way set-associative mapping cache.

When a miss occurs in a set-associative cache and the set is full, it is
necessary to replace one of the tag-data items with a new value. The most
common replacement algorithms used are: random replacement, first-in
first-out (FIFO), and least recently used (LRU). With the random 1'cpln-:c-‘
ment policy the control chooses one tag-data item for replacement at ran-
dom. The FIFO procedure selects for replacement the item that has been in
the set the longest. The LRU algorithm selects for replacement the item that
has been least recently used by the CPU. Both FIFO and LRU can be imple-
mented by adding a few extra bits in each word of cache,

Writing into Cache

An important aspect of cache organization is concerned with memory write
requests. When the CPU finds a word in cache during a read operation, the
main memory is not involved in the transfer. However, if the operation is a
write. there are two ways that the system can proceed.

The simplest and most commonly used procedure is to update main
memory with every memory write operation, with cache memory being
updale(i n pamllel'if it contains the word at the specified address, This is
called the write-through method. This method has the advantage that main
memory always contains the same data as the cache. This characteristic is
important in systems with direct memory access transfers. It ensures tl‘uu
the data residing in main memory arc valid at all times so that an 1O device
(‘Ommunicalinghthrough DMA would receive the most recent llp(]lll.l:.‘d data.

The second procedure 18 called the write-back method, In this methad
only the cache location is updat
is then marked by a flag so that |
¢ache it is copied into main memory.
is that during the time a word resides in the ¢

od during a write operation, The location
ater when the word is removed from the
The reason for the write-back method
ache. it may be updated several

replacement
aleorithmy

write-through

ll‘!'!‘.‘t‘fhu‘;\
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times: however, as long as the word remains in the cache, 1 does nog gy,
whether the copy in main memory is out of date, sinee requests t‘mm. llw~
word are filled trom the cache. It is only when the word is displaceg I‘rn:IrL
ate copy need be rewrien mto main memory, .'\11;11\':

¢ number of memory Writes in a typical Proary
) =hdm

the cache that an accur
ical results indicate that th
ranees between 10 and 30 percent of the total reterences to memory,

Cache Initialization

One more aspect of cache organization that must be taken into consideratign
is the problem of initialization. The cache is intialized when power is applieg
to the computer or when the main memory is loaded with a complete set of
programs from auxtliary memory. After initialization the cache is considered
to be empty, but in effect 1t contains some nonvalid data, Tt s customary (o
include with each word in cache a valid bit to indicate whether or lml’lhc

word contains valid data.

The cache is initialized by clearing all the valid bits to 0. The valid bit
of a particular cache word is set to 1 the first time this word is loaded from
main memory and stays set unless the cache has to be imtialized agan. The
introduction of the valid bit means that a word in cache is not replaced by
another word unless the valid bit is set to 1 and a mismatch of tags occurs. If
the valid bit happens to be 0, the new word automatically replaces the invalid
data. Thus the initialization condition has the effect of forcing misses from

the cache until it fills with valid data.
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13.1  Memory Hierarchy

The memory unit is an essential component in any digital computer since 1S
needed for storing programs and data. A very small computer with a hnuh:f\i
apphication may be able to fulfill its intended task without the need of addi-
tional storage capacity, Most general-purpose computers would run more
efficiently if they were equipped with additional storage beyond the capacity

of the min memory. There 1s just not enough space i one memory unit to
accommodate all the programs used in a typical computer. Morcover. mur—.l‘
computer users accumulate and continue to accumulate large amounts ot
data-processing software. Not all accumulated information is needed by the
processor at the same time. Therefore, it is more economical to use low-cost
storage devices to serve as a backup for storing the information that 1s not
currently used by the CPU. The memory unit that communicates directly with
the CPU is called the main memory. Devices that provide backup storage are
called auxiliary memory. The most common auxiliary memory devices used
i computer systems are magnetic disks and tapes. They are used for storing
system programs, large data fles, and other backup information. Only pro-
grams and data currently needed by the processor reside in main memory,
All other information is stored in auxiliary memory and transferred to main

auxiliary

memory when needed.
- The total memory capacity of a computer can be visualized as being
2 hierarchy of components. The memory hierarchy System consists of
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| in a computer system from the gjq,, but
I

« employet : X ot
es Cmpits 1 relatively faster main memory,
! i} S0 an

all storage devic S B
high-c;u\lcil}‘ ;um.lli“'}' "“‘f'l“j I‘II‘-‘[]“"I-y accessible to the high-speeg
even smaller and tmff Lih;l;[]i;“.,ncs {he components in a typical mcn?(::
FIGUEE Rk BEE warchy are the relatively slow ) g
hierarchy. At the bottom C.}.t Ilh‘t‘ [’11|:.,-ml\::i1 !;:c[thc mugnct-ic (H;\k;nf:f:gnc
tapes used 10 R reme a7 L. nur.v. occupies a central position b\,"beiaS
backup SOAEE .lhc kg m':[ sth the CPU and with auxiliary e
able to communicate directly with the . Lo d Iy
g ocessor. When programs I}Ol residing in majy
= siled by the CPU, they are leught in from auxiliary mep,.
“ren[lv needed in main memory are transferred intg
' ace for currently used programs and datg,
ry called a cache is sometimes useq
1o increase the speed of processing by making current programs and data
available to the CPU at a rapid rate. The cache memory is employed in com-
- te for the speed differential between main memory
access time and processor logic. CPU logic is usually faster than main men{.
o result that processing speed is limited primarily by
the speed of main memory. A technique used to compensate for the mismatch
in operating speeds is to employ an extremely fast, small cache between the
CPU and main memory whose access time is close to processor logic clock
cvele time. The cache is used for storing segments of programs currently
b;-ing oxecuted in the CPU and temporary data frequently needed in the pres-
ent calculations. By making programs and data available at a rapid rate, it is
possible to increase the performance rate of the computer.

While the 1/O processor manages data transfers between auxiliary
memory and main memory, the cache organization is concerned with the
transfer of information between main memory and CPU. Thus each is
involved with a different level in the memory hierarchy system. The reason

for having two or three levels of memory hierarchy is economics. As the

cessing logic. 1

devices through an VO pr
memory are
ory. Programs not cur
auxiliary memory to provide sp

a A ‘special very-high-speed memo

puter Sysiems to compensad

ory access time, with th

Auxiliarv memory

f Magnetic

{ taps g '
3 g Main
IO processor
I " memory
Magnetic
’ disks
' " Cache |
s, ‘ memory

FIGURE 13.1  Memory hierarchy in a computer system. 20
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Many operating systems are desipne
pumber ol independent prog

Auxiliary memory average
iemory, Block size in auz-
P words, while cache block

d 1o enable the CPU 1o process a

. : "”'“1-‘5 concurrently, “I'hiy concept, called mulfi-
Programming, relers (o the existence of WO or more programe

parts of the munm‘ry hierarchy at the same time, In this way it is possible
to keep all parts of the computer busy by working with several programs in
sequence. For example, suppose that a program i being exccuted in the Cpi
and an /O transler is required. The CPU initiates the 1/0) Processor 1o start
executing the transfer. This leaves the CPU free to execute another prograrm,
[n a multiprogramming system, when one program is waiting for input or
output transfer, there is another program ready to utilize the CpU,

With multiprogramming the need arises for running partial programs,
for varying the amount of main memory in use by a given program, and
for moving programs around the memory hicrarchy. Computer programs are
sometimes too long to be accommodated in the total space available in main
memory. Moreover, a computer system uses many programs and all the pro-
grams cannot reside in main memory at all times, A program with its data
normally resides in auxiliary memory. When the program or a segment of
the program is to be executed, it is transferred to main memory to be exe-
tited by the CPU, Thus one may think of auxiliary memory as containing
the totality of information stored in a computer system. It is the task of the
Operating system to maintain in main memory a portion of this information
that j currently active. The part of the computer system that supervises the
W of information between auxiliary memory and main memory i called
¢ for a memory management

o memory management system, The hardwar
S + * 4. :
Ystem ig presented in Sec. 13. 7.

vin different multiprogramming

o R
R LYo
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13.2 Main Memory
The main memory is the central storage unit in a computer system. |y j5
relatively large and fast memory used to store programs and data during the

computer operation, The principal technology used for the Hain memory jy
egrated circuits. Integrated circuit RQ}LEhips

random-acecess based on semiconductor int : e :
memory (RAM) are available in two possible operating modes SR and eynamic, Thc Static
‘ R kAT “internal flip-flops that store the binary informz:

RAM consists essentially of _ : . | .
tion. The stored information remains valid as long as power is applied to the

unit. The dvnamic RAM stores the binzll'}‘wmﬂﬁfcﬁﬁ}
Fharges that arc applied to capacitors. The capacitors are pyovided inside the
chipkhy MOS “_71'!?5‘.[*"_ tors, The stored clmrgc gnﬁ@gpac_ﬂ_ors_@nd to discharge
with time and the capacitors must be periodically recharged by refreshing the
dvnamic memory. Refreshing is done by cycling through the words every
ﬁ.;\\' milliscconds' to restore the decaying-charge. The dynamic RAM offers
reduced power consumption and larger storage capacity in a single memory
chip. The static RAM is easier to use and has shorter read and write cycles,
“Most of the main memory in a general-purpose computer is made
up of RAM integrated circuit chips, but a portion of the memory may be
read-only constructed with ROM chips. Originally, RAM was used to refer to a ran-
memory (ROM) dom-access memory, but now it is used to designate a read/write memory
to distinguish it from a read-only memory, although ROM is also random
access. RAM is used for storing the bulk of the programs and data that are
subject to change. ROM is used for storing programs that are permanently
resident in the computer and for tables of constants that do not change in
value once the production of the computer is completed.

Among other things, the ROM portion of main memory is needed for
storing an initial program called a bootstrap loader. ‘The bootstrap loader is
a program whose function s t uter software operating when
power is turned on. Since RAM is volatile, its contents are destroyed when

power is turned off. The contents of ROM w1 after power is
computer startup turned off and on again. The startup of a_computer consists of turning the
power on and §tq£ti:1g the execution of an initial program, Thus when power
is Turned on, the hardware of the computer sets the program counter to the

first address of the bootstrap loader. The bootstrap program loads a portion

e

of the operating system from disk to main memory and control is then trans-

ferred to the operating system, which prepares the computer for general use.
RAM and ROM chips are available in a variety of sizes. If e memory

needed for the computer is larger than the capacity of one chip, it is necessary

to combine a number of chips to form the required memory size. To demon-

strate the chip interconnection, we will show an example ofa 1024 x $ mem-

ory constructed with 128 x 8 RAM chips and 512 x § ROM chips.

bootstrap loader

RAM and ROM Chips

A RAM chip Ib better suited for communication with the CPU if it has one or -
more control inputs that select the chip only when needed. Another common =

Scanned by CamScahne'f‘



13.2

feature 1s a bidirectional data bus thy - _ . ; § ,
memory to CPU during a read :‘;]r::::l:’ll:n::: tllt::llll(l;;::;” ol dI‘iItu -fﬂhm‘ !mm
write operation. A bidirectional bus ey l‘u.' \:nntcr11 ‘e I I[I‘, llm';"_‘_".yIl!““nl; :
fers. A three-state bufler output can pe placed i ; HIL.M- T I,1,1.l mj‘_',.hmw‘huli
a signal equivalent to logie 1, a signal L‘t]ui\ﬁ] ‘ml UI]LI “,I- l, i ]"M.’mu.hh”ch'
ance state. The logic 1 and 0 are norma) di 1‘il-Llnvuﬂi .“.L.‘u:‘“' i hl.gh_""lm._l'
state behaves like an open cireuit, which mi.“d‘ T%Mh‘.' i hlgh-unpcdumlu
2 signal and has 1o logic Significance. ans that the output does not carry
‘ [he blo_"rk, '_Jm;:';m“.l '”_}i ‘“ R.A_M chip is shown in Fig. 13.2. The capacity
of the memory is 128 words of eight bitg (one byte) per word, This requires
IR Nl et Gecveons yte) per word. This requires
a 7-bit address and an "5"b“‘b1d“'0ﬂlﬂllul data bus. The read and write inputs
specify the memory operation and the two chips select (CS) control inputs
are for enabling the chip only when it is selected by the microprocessor. Th;:
availability of more than one control input to select the chip facilitates the
decoding of the address lil_lt‘s when multiple chips are used in the m-icm-
computer. The read and write inputs are sometimes combined into one line
labeled R/W. When tl}c chig is sclected, the two binary states in this line
\ specify the two operations of read or write,
; The function table listed in Fig. 13.2(b) specifies the operation of the
¥ RAM chip. The unit is in operation only when CS1 = 1 and CS2 = 0. The bar
on top of the second select variable indicates that this input is enabled when it
is equal to 0. If the chip select inputs are not enabled, or if they are enabled but
the read or write Inputs arc not enabled, the memory is inhibited and its data

Chip select | —— Csl
Chip select 2 — Ccs2
Read —1 RD 128 %8 l«——» 8-bit data bus
= RAM

Write — WR

7-bit address — AD7

(a) Block diagram

CSl ['.'_S: RD WR | Memory function State of data bus
— :
0 "_#T—-_;:_—-{‘ Inhibit High-impedance
l X X [nhibit - High-impedance
0 b 3 il
0 0 0 Inhibit High-impedance
1 1 Write i Input data to RAM
l 0 .4 Read | Output data from RAM
1 0 1 ) | |
ibi High-impedance
; t s
g 2E S | bk ) —
(b) Function table
FIGURE 13.2 Typical RAM chip-
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bus is in a high-impedance state, When CS1 1 :nlmit H’ 0, the memory ey,
be placed in a write or read mode. When the WR inputis enabled, the Memory
stores a byte from the data bus into a location .-i|n.'f.'|1|m! by the address mpu
lines. When the RD input is enabled, the content of the selected byte g plitce
into the data bus. The RD and WR signals control the memory operation 4,
well as the bus buffers associated with the hidliru:litlnl:l'l data bus,

A ROM chip is organized externally in asimilar manner. Howeyer,
since a ROM can only read, the data bus um?lunly be I an output ”"."IU' The
block diagram of a ROM chip 15 shown in Fig. Ilfi..i. FFor the s:mw-x:.lfc chip,
it is possible to have more bits of ROM than {'JI RAM, hIL'L'.'lus.c the interng)
binary cells in ROM occupy less space than in RAM. For this reason, the
diagram specifies a 512-byte ROM, while the RAM l?n.s.' only 128 bytes,

The nine address lines in the ROM chip specify any onc of the 512
bytes stored in it. The two chip select inputs must be CST 1 and €S2 -
for the unit to operate. Otherwise, the data bus is in a high-impedance state,
There is no need for a read or write control because the unit ¢an only read.
Thus when the chip is enabled by the two select inputs, the byte selected by
the address lines appears on the data bus,

Memory Address Map

The designer of a computer system must caleulate the amount of memory
required for the particular application and assign it to ¢ither RAM or ROM.
The interconnection between memory and processor is then established from
knowledge of the size of memory needed and the type of RAM and ROM
chips available. The addressing of memory can be established by means of
a table that specifics the memory address assigned to cach chip. The table,
called a memory address map, is a pictorial representation of assigned
address space for each chip in the system.

To demonstrate with a particular example, assume that a computer sys-
tem nceds 512 bytes of RAM and 512 bytes of ROM. The RAM and ROM
chips to be used are specified in Figs. 13.2 and 13.3. The memory address
map for this configuration is shown in Table 13.1. The component column
specifies whether a RAM or a ROM chip is used. The hexadecimal address
column assigns a range of hexadecimal cquivalent addresses for cach chip.
The address bus lines are listed in the third column, Although there are 16

Chip select | ——— CS1

Chip select 2 ———{ ('S2

5128
ROM

e o W01 il bUIS

9-bit address A9

FIGURE 13.3 Typical ROM chip.
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lines 10 the address bus, the table shows only 10 line
are not used in this example and are assumed |
the address bus lines designate those lines that must be connected to the
address inputs in each chip. The RAM chips have 128 bytes and need seven
S s o TP o L I & ) a L v
address lines. The ROM chip has 512 byes and needs 9 address lines. The
- . ‘ Ly Ve
lines: lines 1 tl or
: . sthmes 1 through 7 for the
; aAQ Q {5 i £
RAM ;md‘ lines | 1hrm|’gh ) for I]:ll.. ROM. It is now necessary to distinguish
between four RAM chips by assigning 1o ¢gepy a different address. For this
ular example we choose bus lines 8 - R
paret A P  Riste thiies lines 8 and 9 (o represent four distinet
binary combinations. mote thatany other pair of unused bus lines can be cho-
sen for this purpose. The "“"IC clearly shows that the nine low-order bus lines
canctitute a memory space for RAM eque 9 i Bt
constitute 4 s II{O\I ey . [}qu‘ll t0 27 = 512 bytes. The distinction
between a RAM dl'llll Moaddress is done with another bus line. Here we
X -~ line s purpose, When line - N
choose line 10 ﬂ"”_‘ : I - POk, When line 10 is 0, the CPU selects a RAM,
and when this lin¢ 18 equal to 1, it selects the ROM.,

s because the other 6
d to be zero. The small x's under

s are always assigned to the low-order bus

N The equivalent hexadecimal address for cach chip is obtained from the

. information under the address bus assignment. The address bus lines are sub-

B 7 divided into groups of four bits each so that each group can be represented
with a hexadecimal digit. The first hexadecimal digit represents lines 13 to
16 and is always 0. The next hexadecimal digit represents lines 9 to 12, but
lines 11 and 12 are always 0. The range of hexadecimal addresses for each
component is determined from the x's associated with it. These x's represent
a binary number that can range from an all-0s to an all-1's value,

Memory Connection to CPU

RAM and ROM chips are connected to a CPU through the data and address
buses. The low-order lines in the address bus select the byte within the
chips and other lines in the address bus select a particular chip through its
chip select inputs. The connection of memory chips to the CPU is shown
in Fig. 13.4. This configuration gives a memory capacity of 512 bytes of
RAM and 512 bytes of ROM. It implements the memory map of Table 13.1.
Fach RAM receives the seven low-order bits of the address bus to select
one of 128 possible bytes. The particular RAM chip selected is determined
from lines S and 9 in the address bus. This is done through a 2 x 4 decoder

TABLE 13.1 Memory Address Map for Microprocomputer

ISR

Address bus

Hexadecimal —————— -
Component  address 10__?_??_3_" 7 6 5 4 3 2 1
“R_':'\I . _{}0{}{}-0-6—7:’% ﬁﬁﬁﬁﬁﬁ 0 g 0 x X X X X X X
RAM 2 0080-00FF 0 0 I x x X X X X X
RAM 3 0100-017F o I 0 x x X X X X X
RAM 4 0180-01FF o 1 I x x x X X X X
ROM 0200-03FF 1 | B OB RN XX R

e i
it s e e B
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Data ft—

Y
=
o

ot
-
=
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WR
AD7

Yy Y

» CS1

T i 128 X §
. o i Data
R RAM 3

—>» WR
l » AD7

» CS1

1 g o 128X 8

» =0 et Data |«
N RD RAM 4
™ WR

; > AD7

Y

S|
" 1-7 128 X 8

8 }Am ROM

Data

FIGURE 13.4 Memory connection to the GPU. 8
Scanned by CamScanner



13,2 Main Mamory 487

whose outputs go to the CST inputs in each RAM chip. Thus, when address
lines & and 9 are equal to 00, the first RAM chip is selected. When 01, the
second RAM chip is selected, and so on. The RD and WR outputs from the
microprocessor are applied to the inputs of cach RAM chip.

The selection between RAM and ROM is achieved through bus line
10. The RAMs are selected when the bit in this line is 0, and the ROM when
the bit is 1. The other chip select input in the ROM is connected to the RD
control line for the ROM chip 1o be enabled only during a read operation,
Address bus lines 1 to 9 are applied to the input address of ROM without
going through the decoder. This assigns addresses 0 to 511 to RAM and 512
to 1023 to ROM. The data bus of the ROM has only an output capability,
whereas the data bus connected to the RAMs can transfer information in
both directions.

The example just shown gives an indication of the interconnection
complexity that can exist between memory chips and the CPU. The more
chips that are connected, the more external decoders arc required for selee-
tion among the chips. The designer must establish a memory map that
assigns addresses to the various chips from which the required connections
are determined.

Scanned by CamScanner



13.3 Auxiliary Memory

The most common auxiliary memory devices used in computer
maenetic disks and 1apes. Other components used. but not as frequently, are
magnetic drums, magnetic bubble memory, and optical disks. To understand
full;' the physical mechanism of auxiliary memory devices one must have
a knowledge of magnetics, electronics, and electromechanical systems.
Although the physical properties of these storage devices can be quite com-
plex, their logical properties can be characterized and compared by a few
parameters. The important characteristics of any device are its access mode,
access time, transfer rate, capacity, and cost.

The average time required to reach a storage location in memory and
obtain its contents is called the access time. In electromechanical devices
with moving parts such as disks and tapes, the access time consists of a seek
time required to position the read-write head to a location and a rransfer
time required to transfer data to or from the device. Because the seek time
is usually much longer than the transfer time, auxiliary storage is organized
in records or blocks. A record is a specified number of characters or words.
Reading or writing is always done on entire records. The transfer rate is the
number of characters or words that the device can transfer per second., after it
has been positioned at the beginning of the record.

Magnetic drums and disks are quite similar in operation. Both consist
of high-speed rotating surfaces coated with a magnetic recording medium.
The rotating surface of the drum is a cylinder and that of the disk. a round
flat plate. The recording surface rotates at uniform speed and is not started or
stopped during access operations. Bits are recorded as magnetic spots on the

surface as it passes a stationary mechanism called a wrire head. Stored bits
are detected by a change in magnetic field produced by a recorded spot on the
surface as it passes through a read head. The amount of surface available for
recording in a disk is greater than in a drum of equal physical size. Therefore.
more information can be stored on a disk than on a drum of comparable size.
For this reason, disks have replaced drums in more recent computers.

systems are

Magnetic Disks

A magnetic disk is a circular plate constructed of metal or plastic coated
with magnetized material. Often both sides of the disk are used and several

.
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)4 Memory Organization
e spindle with read/write heads available on each,
at high speed and are not stopped or starteq

for access purposes. Bits arc stored in the magnetized surl'zwf: 1:n .‘spc')ts along
concentric circles called tracks. The tracks arc unmmnnlx {lwn_ilcdvlntn s¢c-
tions called sectors. In most systems, the minimum q““”“‘)"”fN”Urmiui(m
which can be transferred is a scctor: The subdivision of one disk surface into
tracks and scctors is shown in Fig. 13,12 ‘ ‘

Some units use a single read/write head for cach disk surface. In this
the track address bits arc used by a mechanical assembly to
move the head into the specified track position before reading or writing, [n
other disk systems, separalc read/write heads are provided for cach track in
cach surface. The address bits can then select a particular track electronically
through a decoder circuit. This type of unit is morc expensive and is found
only in very large computer Systems.

Permanent timing tracks are used in disks to synchronize the bits and
recognize the sectors. A disk system is addressed by address bits that specify

he sector number and the track within the

the disk number, the disk surface, t
itioned in the specified track, the

sector. After the read/write heads are pos!
m has to wait until the rotating disk reaches the specified sector under
very fast once the beginning of

ultiple heads and simultancous

disks may be stacked on 0!
surface. All disks rotate together

type of unit,

syste
the read/write head. Information transfer 1s

a sector has been reached. Disks may have m

transfer of bits from several tracks at the same time.
A track in a given sector near the circumfcrence is longer than a track

disk. If bits are recorded with equal density, some

near the center of the
ke all the records

tracks will contain more recorded bits than others. To ma
in a sector of equal length, some disks use a variable recording density with

higher density on tracks near the center than on tracks ncar the circumfer-
ence. This equalizes the number of bits on all tracks of a given scctor.

/ v
1

P T e -
L T o R A S LR A

Read/Write
head

FIGURE 13.12 Magnetic disk.
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Disks that are permanently attached to the unit assembly znd canng
be removed by the oceasional user are called hard disks. A disx drive with
removable disks is called a floppy disk. The disks used with 2 foppy disk
drive are small removable disks made of plastic coated with magnetic i
ing matcrial. There are two sizes commonly used, with dizmeters of 5.2
3.5 inches. The 3.5-inch disks are smaller and can store more datz than ¢z
the 5.25-inch disks. Floppy disks are extensively used in personal compuiers
as a medium for distributing software to computer users.

(3%
-

Magnetic Tape

A magnetic tape transport consists of the electrical, mechanical, and ¢lec-
tronic components to provide the parts and control mechanism for a mag-
netic-tape unit. The tape itself is a strip of plastic coated with & magnetic
recording medium. Bits are recorded as magnetic spots on the tape along sev-
eral tracks. Usually, seven or nine bits are recorded simultaneously to form
o character together with a parity bit. Read/write heads are mounted one in
each track so that data can be recorded and read as a sequence of characters.

Magnetic tape units can be stopped, started 1o move forward or in
reverse. or can be rewound. However, they cannot be started or stopped
fast cnough between individual characters. For this reason, information
i recorded in blocks referred to as records. Gaps of unrecorded tape are
inserted between records where the tape can be stopped. The tape starts mov-
ing while in a gap and attains its constant speed by the time it reaches the next
record. Each record on tape has an identification bit pattern at the beginning
and end. By reading the bit pattern at the beginning, the tape control identi-
fies the record number. By reading the bit pattern at the end of the record, the
control recognizes the beginning of a gap. A tape unit is addressed by speci-
fying the record number and the number of characters in the record. Records

may be of fixed or variable length.

154 Fosociative Memory 495
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12.6 Direct Memory Access (DMA)

The transfer of data between a fast Stnl‘zl{.:‘.{? device such as l.ﬂilg”t‘li(: disk ang
memory is often limited by the speed of the CPU. Removing the CPU frop,
the path and letting the peripheral _dcv’lf.:t:‘ manage the memory buses directly
would improve the speed of transfer. This trnpsfcr IL‘-::1hl'|l(].LiL‘IIS called dire
memory access (DMA). During DMA transfer, the CPU is idle and has no
control of the memory buses. A DMA controller takes over the buses to map.
age the transfer directly between the IO device and memory.

) The CPU may be placed in an idle state in a variety of ways. One
common method extensively used in microprocessors is to disable the buses
through special control signals. Figure 12.16 shows two control signals in the
CPU that facilitate the DMA transfer. The bus request (BR) input is used by
the DMA controller to request the CPU to relinquish control of the buses,
When this input is active, the CPU terminates the execution of the current
instruction and places the address bus, the data bus, and the read and write
lines into a high-impedance state. The high-impedance state behaves like an
open circuit, which means that the output is disconnected and does not have a
logic significance (see Sec. 4.3). The CPU activates the bus grant (BG) output
to inform the external DMA that the buses are in the high-impedance state.
The DMA that originated the bus request can now take control of the buses
to conduct memory transfers without processor intervention. When the DMA

terminates the transfer, it disables the bus request line. The CPU disables the
bus grant, takes control of the buses, and returns to its normal operation.

DBUS («—> Address bus |
Bus request —— BR

High-impedence
ABUS —= Data bus L{disabic}

‘hen BG 18
D . when B
Bus grant <——1 g R Read enabled

WR —> Write

CPU

S—

FIGURE 12,16 CPU bus signals for DMA transfer.
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12.6 Direct Memory Access (DMA) 447
Bus Arbitration

The pDMA controller and the processor use

coordinate thc. transter of data with the memory. The one (processor or DMA
controller) using th ht,m lo carry out trangfer of data with thc\ nlL‘mm:x' h
called the bus master. The bus master initiates the transfer The other device
articipating in the transter (memory in thi case) is called slave. Thus, we
can say that by incorporating the bus arbitration mechanism, two bus nu;.;tcrs

(CcPU and DMA (3.0['][1'0“01') can transfer data over the same bus without any
conflicting operations. .

the BR and BG signals to

When the DMA takes control of the bus system
directly with the memory. The transfer can be i .
purst transfer. a block sequence consisting
is transferred in a continuous

it communicates
made in several ways. In DMA
of a number of memory words burst transfer
burst while the DMA controller is master of
(he memory buses. This mode of transfer is needed for fast devices such as

magnetic disks, where data transmission cannot be stopped or slowed down
until an entire block is transferred. An alternative technique called cvele
stealing allows the DMA controller to transfer one data word at a time, after
which it must return control of the buses to the CPU, The CPU merely delays

its operation for one memory cycle to allow the direct memory [/O transfer
to “steal” one memory cycle.

cvcle stealing

j MA Controller

The DMA controller needs the usual circuits of an interface to communicate
with the CPU and I/O device. In addition, it needs an address register, a word
count register, and a set of address lines. The address register and address
lines are used for direct communication with the memory. The word count
register specifies the number of words that must be transferred. The data
transfer may be done directly between the device and memory under control
of the DMA.
Figure 12.17 shows the block diagram of a typical DMA controller.
The unit communicates with the CPU via the data bus and control lines. The
registers in the DMA are selected by the CPU through the address bus by
enabling the DS (DMA select) and RS (register select) inputs. The RD (read)
and IWR (write) inputs are bidirectional. When the BG (bus grant) input is 0,
the CPU can communicate with the DMA registers through the data bus to
read from or write to the DMA registers. When BG = 1, the CPU has relin-
Quished the buses and the DMA can communicate directly with the memory
by specifying an address in the address bus and activating the RD or WR
control. The DMA communicates with the external peripheral through the
Tquest and acknowledge lines by using a prescribed handshakin.g procedure.
The DMA controller has three registers: an address register, a word
‘ount register, and a control register. The address register contains an address
' Specify the desired location in memory. The address bits go through bus
Ufers into the address bus. The address register is il?crememt:d after each
“ord that ig transferred to memory. The word count register holds the number
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Address bus 4——’-"/——/—_ \

Data bus
buffers

Address bug
buffers

Data bus -

RSB

« > Address register
__-_—-—-'-"‘-\-.“

DMA select —{ DS

Register select — RS

Internal bus

< > Word count register
— il

Read =—> RD

Control
Write <——> WR  |.4ic

Y

Control register
—

A

Bus request <— BR

Bus grant —>{ BG
DMA request

Interrupt < Interrupt : _
DMA Acknowledge to I/O device

S BRSSP T BT AL G W SOy PELN I bR C LI

FIGURE 12.17 Block diagram of DMA controller.

of words to be transferred. This register is decremented by one after each
word transfer and internally tested for zero. The control register specifies the
mode of transfer. All registers in the DMA appear to the CPU as 1/O interface
registers. Thus the CPU can read from or write into the DMA registers under
program control via the data bus.

The DMA is first initialized by the CPU. After that, the DMA starts
and continues to transfer data between memory and peripheral unit unti]
an entire block is transferred. The initialization process is essentially a pro-
gram consisting of /O instructions that include the address for selecting
particular DMA registers. The CPU initializes the DMA by sending the fol-
lowing information through the data bus: i

Pl A s e L

1. The starting address of the memory block where data are available (for
read) or where data are to be stored (for write)

2. The word count, which is the number of words in the memory block
3. Control to specify the mode of transfer such as read or write
4, A control to start the DMA transfer

The starting address is stored in the address register. The word count is stored
in the word count register, and the control information in the control registet:
Once tl?c DMA is initialized, the CPU stops communicating with the DMA
unless it receives an interrupt signal or if it wants to check how many words
have been transferred. |

DMA Transfer

The position of the DMA controljer among the other components in 2 com-

puter system is illustrated in Fig. 12.18. The CPU communicates with fh‘
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P S T

—>1 BG M Randomenccess
memory (RAM)

— BR

i h) ’
| RD  WR Address Data RD  WR Address Data
! ] T ] A

Y Read control

1
| g
! \ Write control

|
; y Data bus )
I L A

Y Address bus

Address
select
A Y Y
WR  Address Data
DMA acknowledge
RS Direct memory 1/0
BR access (DMA) Pcripi]cral
controller device
: L’/——* BG DMA request
|
K Interrupt

FIGURE 12.18 DMA transfer in a computer system.

DMA through the address and data buses as with any interface unit. The
DMA has its own address, which activates the DS and RS lines. The CPU
initializes the DMA through the data bus. Once the DMA receives the start
control command, it can start the transfer between the peripheral device and

the memory.

When the peripheral device sends a DMA request, the DMA controller

activates the BR line, informing the CPU to relinquish the buses. The CPU
responds with its BG line, informing the DMA that it ises are disabled. The
DMA then puts the current value of its address register into the address bus,
initiates the RD or R signal, and sends 2 DMA acknowledge to the periph-
eral device. Note that the RD and WR lines in the DMA controller are bidirec-
tional. The direction of transfer depends on the status of the BG line. When
BG =0, the RD and WR are input lines allowing the CPU to communicate
with the internal DMA registers. When BG = 1, the RD and WR are output
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lines from the
read or write operation for the data. ‘ .

When the },Nilmc.;ﬂ device receives a DMA ;1Fk|1(:x\'I0gig¢, it Puts 4
word in the data bus (for write) or receives a word Irfnn the data by (for
read). Thus the DMA controls the read or write operations and supplieg the
address for the memory. The peripheral unit can then communicyge with
memory through the data bus for direct transier between the two unigg while

DMA controller to the randomi-access memory to "‘I'Ch‘ify h
' ¢

i v s

e bt S it . sl bt

the CPU is momentarily disabled.

For cach word that is transferred, the DMA increments g addregg
register and decrements its word count register. I the word count doeg not
reach zero. the DMA checks the request line coming from the periphery),
For a high-speed device, the line will be active as soon as the Previoys
transfer is completed. A sccond transfer 1s then imtated, and the process !
continues until the entire Hock is transferred. 1 the peripheral speeg is ¥
slower, the DMA request line may come somewhat later. In this case the [
DMA disables the bus request line so that the CPU can continue to execute ¥
its program. When the peripheral requests a transfer, the DMA requests the 1

e L e T S o

buses again, ')

If the word count register reaches zero, the DMA stops any further |
transfer and removes its bus request. It also informs the CPU of the term- !
nation by means of an interrupt. When the CPU responds to the interrupt,
it reads the content of the word count register. The zero value of this reg-
ister indicates that all the words were transferred successfully. The CPU
can read this register at any time to check the number of words already
transterred.

A DMA controller may have more than one channcl. In this case,
sach channel has a request and acknowledge pair of control signals which
are connected to separate peripheral devices, Each channel also has its own
address register and word count register within the DMA controller. A prior-
ity among the channels may be established so that channels with high priority
are serviced before channels with lower priority.

DMA transter is very useful in many applications. It is used for fast
transfer of' information between magnetic disks and memory. It is also useful
for updating the display in an interactive terminal. Typically, an image of the
screen display of the terminal is kept in memory which can be updated under
program control. The contents of the memory can be transferred to the screen
periodically by means of DMA transfer.
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12.4 Modes of Transfer

Binary information received from an external device is usually stored 1n
memory for later processing. Information transferred from the central
computer into an external device originates in the memory unit. The CPU
merely executes the I/O instructions and may accept the data temporarily, but
the ultimate source or destination 1s the memory unit. Data transfer between
the central computer and 1/O devices may be handled in a variety of modes.
Some modes use the CPU as an intermediate path; others transfer the data
divectly to and from the memory unit. Data transfer to and from peripherals

may be handled in one of three possible modes:

|. Programmed 'O
. Interrupt-initiated V'O

-

" Direct memory access (DMA)
Programmed 1/O operations are the result of 1/O instructions written
in the CLui;lpllter program. Each data item transfer 1§ initiated by an mstruc-

tad

programmed 1/0
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gram 10 process the 1 O transfer. and then returns to the task it was originally
performing.
Transfer of data under programmed 1 O is berween CPU and periph-
DMA eral. In direct memory access (DMA). the interface transiers data into and out
of the memory unit through the memory bus. The CPU initiates the transfer
bv supplving the interface with the starting address and the number of words

needad to be transferred and then proceeds 10 execute other tasks. When the
transfer is made. the DMA requests memory cycles through the memory bus,
When the request is granted by the memory controller, the DMA transfers
the data directly into memory. The CPU merely delays its memory access
operation to allow the direct memory 1'O transfer. Since peripheral speed
is usually slower than processor speed, I O-memory transfers are infrequent
compared 1o processor access to memory. DMA transfer is discussed in more
detail in Sec. 12.6.
Many computers combine the interface logic with the requirements for
JOP direct memory access into one unit and call it an 'O processor (I0P). The
IOP can handle many peripherals through a DMA and interrupt facility. In
such a system, the computer is divided into three separate modules: the mem-
ory unit, the CPU, and the IOP. 'O processors are presented in Sec. 12.7.

Example of Programmed i/0

In the programmed IO method, the /O device does not have direct access
to memory. A transfer from an /O device to memory requires the execution
of several instructions by the CPU, including an ian'n instruction to transfer
the data from the device to the CPU and a store instruction to transfer e
data from the CPU to memory. Other instructions may be needed to \‘ffjdﬁs" A

that the data are available from the device and to count the numbers of words
transferred. %
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12.4 Modes of Transfer A35

An example of data transfer from an 1/0 device thr f bl
into the CPU is shown ilf Fig. 12.10, 'I'Iu:‘ (]lc[\i{;i:l;:il::l'::'l:{I]:lltxl:uitlil'“ll-t::'r[““:
ot @ time a5 they are available. When a byte of data |5 w ]i)'rl I.- III{'ll ll‘ (f'ft

jaces it in the 1/0 bus and enables its data valid line, 'll'I ‘-l i dl)~ L‘JI:' 1“}"'.‘*.\”@'-5
the byte into its data rcglsipcr and enables the data ucccl’)lullblillll"L'll'lM:L: [MILPH
cels @ bit in the st_utus register that we will refer to as an /- -L:*[]fm‘fllll'luI :!LL
Jevice can now disable the data valid line, but it will I.l(;l tr'mU'II" ; “‘P’ I”ﬁjll "
until the data accepted line is disabled by the interface ‘Iflliﬁ U :”.""1 Hil b
the handshaking procedure established in Fig, 12.5. i s necorne

A program 15 wriltcn for the computer to check the flag in the status
register to determine if a byte has been placed in the data re :if'lcr b H‘tlh'd[;(l;
device. This is done by reading the status register inl()"l (‘EI)'U rc r)'f't ]L |
checking the value of the flag bit. If the flag is equal to 1l 1!?{: ('PlLJBI'Z'L; 'l:llu*
data from the data register. The flag bit is then cleared to E'J by ui.tlwr]ﬂ](: E'I’]l(J’
or the interface, depending on how the interface circuits are designed (i11cc
the flag is cleared, the interface disables the data accepted line u;u!ljt]u: Llcvicc
can then transfer the next data byte.

A ﬂowchar.t of the program that must be written for the CPU is shown
in Fig. 12.11. It 18 aslsumed that the device is sending a suqucnﬁc of bytes
e stored in memory. The transfer of cach byte requires three

that must b
instructions:

|. Read the status register.
2. Check the status of the flag bit and branch to step | if not set or to step

3 if set.
3. Read the data register.

» __".'/i

register and then transferred to memory with a
store instruction. A common 1/O programming task is to transfer a block of
words from an I/0 device and store them in a memory buffer. A program that
stores input characters in a memory buffer using the instructions defined in
Chap. 6 is listed in Table 6.21.

The programmed 1/0 method is particularly useful in small low-speed
computers or in systems that ar dedicated to monitor a device continuously.

Each byte is read into a cru

r_— r—’_’—__—’——_
[nterface
/O bus
Data bus |—
Data register
Address bus i Ivp ‘ . |
7" Data valid /o
o — |
CPU 1/O read device
i v =
i /O write Status Data accepted
| ——— 7 register
|
i .______—-—-———"’"—'__
e oo ] s
F = Flag bit

FIGURE 12.10 Data transfer from /O device to CPU.
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il P b
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]

4

4

|

X

L’ '-a
Read status register :] 1

r Transfer data to memory [
Operation no

complete?

|

|

Continue _ 3

with i

program ¥

A

|

|

FIGURE 12.11 Flowchart for CPU program to input data. ;‘j

The difference in information transfer rate between the CPU and the.IIO
device makes this type of transfer inefficient. To see why this is inefficient,
consider a typical computer that can execute the two instructions that rifad
the status register and check the flag in 1 ps. Assume that the input GEVICE
transfers its data at an average rate of 100 bytes per second. This is equwaleﬂ;
to one byte every 10,000 ps. This means that the CPU will check the flag
10,000 times between each transfer. The CPU is wasting time while checking
the flag instead of doing some other useful processing task.

Interrupt-Initiated 1/0 :
he interfac®

An alternative to the CPU constantly monitoring the flag istolett &
ransfer usé

inform the computer when it is ready to transfer data. This mode of t

d
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he interrupt facility. While the CPU is running a program, it does not check
the flag. HO“"_?"'CT- "'_"hcn the flag is set, the computer is momentarily interrupted
from proceeding with the current program and is informed of the fact that the
fiag has been set. The CPU deviates from what it is doing to take care of the
input or output transfer. After the wransfer is completed lhcccompulcr returns 10
= previous program to continue what it was doing before the inte
= The CPU responds to the interrupt :;:3”11::: E:ﬁ]’m g
; y storing the return address
from the program Counter into a memory stack and then control branches to 2
service routine that processes the required I/O transfer. The way that the pro-
cessor chooses the branch address of the service routine varies from one unit
to another. In principle, there are two methods for accomplishing this. One is
called vectored interrupt and the other, nonvectored interrupt. Tn a nonvec-
tored interrupt, the branch address is assigned to a fixed location in memory.
In a vectored interrupt, the source that interrupts supplies the branch infor-
mation to the computer. This information is called the interrupt vector. In
some computers the interrupt vector is the first address of the /O service
routine. In other computers the interrupt vector is an address that points to 4
ocation in memory where the beginning address of the I/O service routine is
ored. A system with vectored interrupt is demonstrated in Sec. 12.5.

vectored interrupl

"!Software Considerations

The previous discussion was concerned with the basic hardware needed to
interface /O devices to a computer system. A computer must also have soft-

ware routines for controlling peripherals and for transfer of data between the
'O routines must issue control commands to acti-

processor and peripherals. I/
vate the peripheral and to check the device status to determine when it is ready
for data transfer. Once ready, information is transferred item by item until all
the data are transferred. In some cases, a control command is then given to
execute a device function such as stop tape or print characters. Error checking
and other useful steps often accompany the transfers. In interrupt-controlled
transfers, the 1/O software must issue commands to the peripheral to interrupt
when ready and to service the interrupt when it occurs. In DM'A transfer, the
/0 software must initiate the DMA channel to start its operation. .
Software control of input-output equipment is a comp.lcx undertaking.
For this reason 1/O routines for standard peripherals are PFU‘-’I_dEd by the man-
ufacturer as part of the computer system. They are usual!y mclﬁudcd vfwt'hmr
the operating system. Most operating systems are soupphed vw}h a \.-‘arlc}:}?-
of /O programs to support the particular line of penpherals Oﬁemd.fff t L
computer. 1/O routines are usually available as operating system proce u?s
and the user refers to the established routines t0 specify the type of transfer
fequired without going into Jetailed machine language pr ograms.

1/0) routines
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Types of Interrupts

are three mai 5 :
There arc three major types of interrupts that cause a break in the normal
exccution of a program. They can be classified as:

1. External interrupts

2. Internal interrupts
3. Software interrupts

External interrupts come from input-output (1/0) devices, from a timing device,
from a circuit monitoring the power supply, or from any other external source.
Examples that cause external interrupts are [/O device requesting transfer of
data, 1/0 device finished transfer of data, elapsed time of an event, or power
failure. Timeout interrupt may result from a program that is in an endless loop
and thus exceeded its time allocation. Power failure interrupt may have as its
service routine a program that transfers the complete state of the CPU into a
nondestructive memory in the few milliscconds before power ceascs.

Internal interrupts arisc from illegal or erroncous use of an instruc-
tion or data. Internal interrupts are also called traps. Examples of inlcrfu‘pts
caused by internal error conditions are register overflow, attempt 1o (11\:‘Idc
by zero, an invalid operation code, stack (wcrﬂow,‘and protection ?rlo'la'tlpn.
These error conditions usually occur as a result of a premature lCIIﬂ.II](flI()’I}
of the instruction execution. The service program that processes the interna
interrupt determines the corrective measure to be taken. s i

The difference between internal and c'xtcrf;“l‘l mlli(t’ir(:::pc;u;cd I;y the
Interna] interrupt is initiated by some exceptiond [:0?-:1 intcrrupis are syn-
Program itself rather than by an external met' lm.L,n: asynchronous. If the
thronous with the program while external interrupts arc &
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304  Central Processing Unit

software interrupt

program is rerun, the internal interrupts will occur in the same place each
time. External interrupts depend on external conditions that are independent

of the program being executed at the time.
External and internal interrupts are initiated from signals that occyr

in the hardware of the CPU. A software interrupt is initiated by executing an
instruction. Software interrupt is a special call instruction that behaves like
an interrupt rather than a subroutine call. It can be used by the programmer
to initiate an interrupt procedure at any desired point in the program. The
most common use of software interrupt is associated with a supervisor call
instruction. This instruction provides means for switching from a CPU user
mode to the supervisor mode. Certain operations in the computer may be
assigned to the supervisor mode only, as for example, a complex input or
output transfer procedure. A program written by a user must run in the user
mode. When an input or output transfer is required, the supervisor mode is
requested by means of a supervisor call instruction. This instruction causes a
software interrupt that stores the old CPU state and brings in a new PSW that
belongs to the supervisor mode. The calling program must pass information
to the operating system in order to specify the particular task requested.
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6.7 Input-Output and Interrupt

A computer can serve no useful purpose unless it communicates with the exter-
nal environment. Instructions and data stored in memory must come from some
input device. Computational results must be transmitted to the user through some
output device. Commercial computers include many types of input and output
devices. To demonstrate the most basic requirements for input and output com-
munication. we will use as an illustration a terminal unit with a keyboard and
printer. Input-output organization is dicsussed further in Chap. 12,

input-Qutput Configuration

The terminal sends and receives serial information. Each quantity of infor-
Mation has eight bits of an alphanumeric code. The serial information from

Scanned by CamScanner



_J

ic Computer Organization and Design

168 Bas
the input registet INP'R. The serin) Wory,,.
he oufput register QUIR These g, :ppi.”""'
tion interface senally and wiqy, ”u_: '_‘“‘?Ix

communicate with a ! G e e E ;s 1-
parallel. The input-output configuration s shown m Fig 6,12 ) Il;m-.nmn _
tor interface receives serial information from the kevboard ang Wangy . B

: e o faee receives informaton from OUTR | n g

to INPR. The receiver interface tLL'LHL- ‘ (i : _‘,‘ ang send. B

The operation of the serial communication illlm \
3

is explained in See. 12.3. - o ‘ Ce i
input register The input register INPR consists of clgh‘t ‘ths and holds an Alphyy, £
- | meric input information. The [-bit input flag FGs a control (lip-flop, .”l-. i
flag bit is set to 1 when new information is available in the inpu devige : ¢
is cleared to 0 when the information is accepted by the computer, The ;;nl f
is needed to synchronize the timing rate difference between the inpy, [Ic\-{'}f
and the computer. The process of information transfer is as follows, ]"iliuli:
the input flag /G1 is cleared to 0. When a key is struck in the keyboarg 1'.‘
8-bit alphanumeric code is shifted into INPR and the input flag 17 i Sc'l'{l
I. As long as the flag is set, the information in INPR cannot be changeq h::-
striking another key. The computer checks the flag bit; if it is 1, (e infor. |
mation from /NPR is transferred in parallel into AC and FG is ¢leareg 50
Once the flag is cleared, new information can be shifted into INPR by Slt‘ikinL:

the kevboard s shilted into

for the printer s stored - the
communici

it to the printer serially.

another key.
The output register OUTR works similarly but the direction of informg
tion flow is reversed. Initially, the output flag FGO is set to 1. The cnmpmlm

output register

Serial C
al omputer
[nput - putpllt commumecation registers and
terminal interface fip-flops
i M Gt . w
FGO

Printer

Receiver
interface OUTR <

AC

Tl‘ilrtsmittcr
interface

Keyboard

INPIt powmess

FGI

FIGUR
E6.12 input—output configuration.
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checks the flag hi“ﬁf“ "‘ |, the i‘ﬂb"l“l'ltiﬂl1 from AC is transferred in paral-
el to OUTR and FGO is cleared 10 0. The output device accepts the coded
inthrmnliﬂﬂ- I“'““»‘i ‘!"3 Cmff‘-‘_"f‘““dmg character, and when the operation 1s
completed. it sets f'.(rf) to 1. The computer does not load a new character into
oUTR when F GO is 0 b%‘CzluS{: this condition indicates that the output device
is in the process of printing the character.

|nput-0utput Instructions

[nput and output ingructionsi are needed for transferring information to and
from AC register, for chc(?kmg the flag bits, and for controlling the inter-
rupt facility. Input-output instructions have an operation code 1111 and are
recognized by the control when D, =1 and /= |. The remaining bits of the
instruction specify the particular operation. The control functions and micro-
operations for the input-output instructions are listed in Table 6.5. These
instructions are executed with the clock transition associated with timing
signal T5. Each control function needs a Boolean relation D4I'T, which we
designate for convenience by the symbol p. The control function is distin-
guished by one of the bits in /R(6 - 11). By assigning the symbol B, to bit i
of IR, all control functions can be denoted by pB;, for i = 6 though 11. The
sequence counter SC is cleared to 0 when p = D,ITy=1.

The INP instruction transfers the input information from /INPR into
the cight low-order bits of AC and also clears the input flag to 0. The OUT
instruction transfers the eight least significant bits of AC into the output
register OUTR and clears the output flag to 0. The next two instructions in
Table 6.5 check the status of the flags and cause a skip of the next instruc-
tion if the flag is 1. The instruction that is skipped will normally be a branch
istruction to return and check the flag again. The branch instruction is not
skipped if the flag is 0. If the flag is 1, the branch instruction is skipped and
an input or output instruction is executed. (Examples of input and output
programs are given in Sec. 0.8.) The last two instructions set and clear an
interrupt enable flip-flop /EN. The purpose of /EN is explained in conjunc-
tion with the interrupt operation.

TABLE 6.5 Input-Output Instructions

D,ITy = p (common to all input-output instructions)
IR(i) = B, [bit in IR(6 — 11) that specifies the instruction]

INP i SCe0 Clear SC

pBy; ACO—T) ¢ INPR, FGI« 0 Input character
out pB,; OUTR < ACO=T), FGO 0 Pulphhismacter
SKI pBy IF(FGI=1)then (PC  PC+1) Skip on input flag
SKO pBy: If(FGO=1)then (PC & PC+1) Skip on output flag
10N pBy: [EN &1 Interrupt enable on
IOF pB IEN <0 Interrupt enable off

i
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Program Interrupt

The process of communication just described is referred to 3 Progy
control transfer. The computer keeps checking the flag bit, ang thnﬁ_ Mg
it set, it initiates an information transfer. The difference of iﬂforn fing,
flow rate between the computer and that of the input-output device . oy
this type of transfer inefficient. To see why this is inefficient, G ke
computer that can go through an instruction cycle in 1 pg, Assllmldcra
the input-output device can transfer information at a maximup, rmﬁc thay
characters per second. This is equivalent to one character every 100 0[;0gf I
Two instructions are executed when the computer checks the ﬁag‘hilj _
decides not to transfer the information. This means that at the max: ang
rate, the computer will check the flag 50,000 times between each h_ar']“u
The computer is wasting time while checking the flag instead of doing S;fnir,

other useful processing task.
An alternative to the programmed controlled procedure is ¢4 let g
g

external device inform the computer when it is ready for the transfe In th

meantime the computer can be busy with other tasks. This type thransf:
uses the interrupt facility. While the computer is running a program, jt doei
not check the flags. However, when a flag is set, the computer is momentaij,
interrupted from proceeding with the current program and is informeq of the
fact that a flag has been set. The computer deviates momentarily from what
it is doing to take care of the input or output transfer. It then returns to the

current program to continue what it was doing before the interrupt.

The interrupt enable flip-flop /EN can be set and cleared with ty
instructions. When /EN is cleared to 0 (with the IOF instruction), the flag
cannot interrupt the computer. When /EN is set to 1 (with the ION instruc.
tion), the computer can be interrupted. These two instructions provide the
programmer with the capability of making a decision as to whether or notto

use the interrupt facility.
The way that the interrupt is handled by the computer can be explained

by means of the flowchart of Fig. 6.13. An interrupt flip-flop R is included in
the computer. When R = 0, the computer goes through an instruction cycle.
During the execute phase of the instruction cycle JEN is checked by the
control. If it is 0, it indicates that the programmer does not want to use the
interrupt, so control continues with the next instruction cycle. If IEN is 1,
control checks the flag bits. If both flags are 0, it indicates that neither Ih_ﬂ
input nor the output registers are ready for transfer of information. In this
case, control continues with the next instruction cycle. If either flag s set 0
| while IEN = 1, flip-flop R is set to 1. At the end of the execute phase, conr
trol checks the value of R, and if it is equal to 1, it goes to an interrupt cyck
instead of an instruction cycle. e
The interrupt cycle is a hardware implementation of a branch and & ¢
return address operation. The return address available in PC 18 stored lﬂt
specific location where it can be found later when the program retufﬂ;or
the instruction at which it was interrupted. This location may be 3 proc®

rupt cvele

V|
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\_/'““““h~wl

- i .

\ Feteh and decode

mstriction

Store return addresa

el in location 0
l I V0]« PC
£
b, /—— /" N\ =0

.’;

Faecute
\ instiietion

Branch to location |
PC |

[EN 1)
R« ()

: B SN T }

FIGURE 6.13 Flowchart for interrupt cycle.

register, a memory stack, or a specific memory location. Here we choose the
memory location at address 0 as the place for storing the return address. Con-
trol then inserts address 1 into PC and clears JEN and R so that no more inter-
ruptions can occur until the interrupt request from the flag has been serviced.

An example that shows what happens during the interrupt cycle is
shown in Fig. 6.14. Suppose that an interrupt occurs and R is set to | while
the control is executing the instruction at address 255. At this time, the return
address 256 is in PC. The programmer has previously placed an input-output
Service program in memory starting from address 1120 and a BUN 1120
instruction at address 1. This is shown in Fig. 6.14(a).

When control reaches timing signal T and finds that R = 1, it pro-
ceeds with the interrupt cycle. The content of PC (236) is stored in memory
location 0, PC is set to 1, and R is cleared to 0. At the beginning of the next
instruction cyele, the instruction that is read from memory is in address |
since this is the content of PC. The branch instruction at address | causes the
program to transter to the input-output service program at address 1120. This
program checks the flags, determines which flag is set, and then transfers the

6.7 Input-Output and Interrupt 171
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modified fetch phase

and Design

) ~anization
mputer C)f';,‘dl“..ﬂ
o ~___ Memory
Memory e 3
e 0 256 } 1
@ I o e — S ;
"5 BUN 1120 pC=1[0  BUN 112
1|t '} £ IRSONNS es P0. sl
255 ;
PC=236 program program
______-—-—'_'_._-_._- —.._,___‘_‘
2 1120
L 1O )
program program
— | e e
|  BUN 0 _L BUN 0
___'_,_—————_'___-‘ T ——— ]
(b) After interrupt cycle |

(a) Before interrupt

FIGURE 6.14 Demonstration of the interrupt cycle.

required input or output information. Once this is done, the instruction [gy |
Vto 1 (to enable further interrupts), and the progran

is executed to set /E CrT ‘
returns to the location where it was interrupted. This is shown in Fig. 6.14()
The instruction that returns the computer to the original place in the

main program is a branch indirect instruction with an address part of 0, This
instruction is placed at the end of the [/0 service program. After this instrue.
tion is read from memory during the fetch phase, control goes to the indirect
phase (because /= 1) to read the effective address. The effective address is in
location 0 and is the return address that was stored there during the previous
interrupt cycle. The exccution of the indirect BUN instruction results in plac-

ing into PC the return address from location 0.

Interrupt Cycle

We are now ready to list the register transfer statements for the interrupt
cycle. The interrupt cycle is initiated after the last execute phase if the inter-
rupt flip-flop R is equal to 1. This flip-flop is set to 1 if JEN = | and either
FGlor FGO are equal to I. This can happen with any clock transition excep!
when timing signals T, T orT,are active. The condition for setting flip-flop
R to 1 can be expressed with the following register transfer statement:

LT T,UEN)FGI+FGO): R « |

]Th"_? ‘Sg’)mbﬂl + between FGIand FGO in the control function designates ®
ogic “f,{ operation. This is ANDed with JEN and 77T

» ol ] ] ‘I : '

¢ now modify the fetch and decode phases of the instruction cycle

lnstead Uf USiIl 4 imi 1 y
OI'II l nals i' :r o) . py 3.4 .
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1| he n-:;uu:il{.':d from the three control functions R I.RT 3
Wl L ’ ] A g i " o e . -
T 14t - = 1N Instruc 5 s ey s I T .
whis 15 that after the instruction is executed 2nd SC s cleared to 0).

' 1 ; AL o N e e S : ’ : ~
i ontro) will go through a fetch phase only if R = 0. Otherwise. if R = 1
|':.}“" ) - * . L '-F = : » .k L B
ihe L'(ln"U] 'WIH :,‘1'” ”iff.ll),:’fi iiﬂ.lr.l".'\'..r.- upt ovcie. 1he :;’;Iemp: C-}-C!nﬂ stores the
aurn address (avarlable in /C) im0 memnory location 0. branches to memory
1 Al o s o - - 3
ocation 1. and clears JEN, R, and 5C to 0). This can be done with the follow-

p SCQUENCE of microoperations:
n !

RTy: AR <10, TR & PC
RT: M[AR] <~ TR. PC«0
Ry PC+~PC+1, IENO,Re0,5C«0

During the first timing signal AR 1s cleared to 0. and the content of PC is
ransferred to the temporary register TR, With the second timing signal. the
return address is stored in memory at location 0 and PC is cleared 10 0. The
third timing signal increments PC to 1, clears [EN and R. and control goes
back 1o 7, by clearmg SC to 0. The beginning of the next instruction cycle
has the condition R'7;, and the content of PC is equal to 1. The control then
goes through an instruction cycle that fetches and executes the BUN instruc-

tion in location 1.
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Microprogrammed
Control
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CHAPTER OUTLINE

¢ Control Memory 8.3 Microprogram E 1
3 : - : m Example
g2 Address Sequencing 8.4 Design of Control Unit
--"---__

g.i Control Memory

The function ot.' the control unit in a digital computer is to initiate sequences
of microoperations. The number of different types of microoperations that
are available in a given system is finite. The complexity of the digital sys-
rem is derived from the number of sequences of microoperations that are
perfomled. When the control signals are generated by hardware using con-
ventional logic design techniques, the control unit is said to be hardwired.
\licroprogramming is a second alternative for designing the control unit of
2 digital computer. The principle of microprogramming is an elegant and
svstematic method for controlling the microoperation sequences in a digital
computer.
The control function that specifies a microoperation is a binary vari-
sble. When it is in one binary state, the corresponding microoperation is
executed. A control variable in the opposite binary state does not change
the state of the registers in the systen. The active state of a control variable
may be either the 1 state or the 0 state, depending on the application. In a
bus-organized system, the control signals that specify microoperations are
groups of bits that select the paths in multiplexers. decoders, and arithmetic
logic units.
~ The control unit initiates a series of sequenti
dlons. During any given time. certain microoperations are

al steps of microoper-
to be initiated.

235
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while others remain idle. The CU"”"I]radnf:ll]::ig;tlzﬁirff" time Can y,,
control word represented by a string of I%s and 0's catied a iy S Such, COnryy
words can be programmed to perform various operations on the ¢q,,

. : pUnem
it whose binary control variables 4 .
of the system. A control unit whos ¢ Storeg in

memory is called a microprogrammed L;?f?r{hg!;!i.cidiiitwor'd . Ontrg
- A roinstruction. struction cn. .
microinstruction memory contains within ita m:u(m:].sm-' il i Dr(’"fm SPeCifie,
: ions for the system. A s Microingy,
one or more microoperatio . S i lg.
; : = e alterations of the micr g
microprogram tions constitutes a microprogram. Sinc OProgram are

not needed once the control unit is in operation, the con.trf)] memory ¢, be
The content of the words in ROy ar
a read-only memory (ROM). e 2 ¢ fixeg
and cannot be altered by simple programming since no Writing capabiliyy ;
available in the ROM. ROM words are'made Permﬂfleﬁélﬂiunn? thc hardyy,
production of the unit. The use of a mlcroﬁrograin ]ln ) t‘;s Placing a]) c‘?“-
trol variables in words of ROM for use by_t ¢ control unit through Succesgjy,
read operations. The content of the word in ROM at a given addresg SPecifieg
1 1 n.

’ mlcrfzmms::éc:;:;anced development knowrl as dynamic micrq_)rogramming
permits a microprogram to be loac?ed initially from an auxiliary Mmemory
such as a magnetic disk. Control units that use dynamic mlcr()programming
employ a writable control memory. Thls_ type of memory can _be used fy;
writing (to change the microprogram) but is used mostly for reading, A mem.
ory that is part of a control unit is referred to as a control menory.

A computer that employs a microprogrammed control unit will haye
two separate memories: a main memory and a contro] memory. The maj
memory is available to the user for storing the programs. The contents of
main memory may alter when the data are manipulated and every time that
the program is changed. The user’s program in main MEMOry consists of
machine instructions and data. In contrast, the control memory holds a fixed
microprogram that cannot be altered by the occasional user. The micro.
program consists of microinstructions that specify various internal control
signals for execution of register microoperations. Each machine instruction
initiates a series of microinstructions in control memory. These microinstruc-
tions generate the microoperations to fetch the instruction from main mem-
ory; to evaluate the effective address, to execute the operation specified by
the instruction, and to return control to the fetch phase in order to repeat the
cycle for the next instruction,

The general configuration ofa microprogrammed control unit is demon-

Strated in the block diagram of Fig. 8.1. The contro] memory is assumed

to be a ROM, within which all contro] ; ion i stored.
control adiress Thi conir o ntrol information is permanently stor

register

control memory

struction contains a control word that specifies or¢
Operations for the datq processor. Once these operations &%
ontrol must determine the next address. The location of *

Or more micro-
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WURE S Microprogramimed contiol organization,

come bits of the present microinstrueti .

e HH Tomstiuetion o control the generation ol the

address of Y.‘m next m:c'n‘unslnmlimL The next address may also be a funetion
| gx.--:ﬁml: wmput Imndttmns. While the microoperations are betng executed,
the TN 3“‘?7‘"\“‘- ' computed i the next address generator eireuit and then
mansferred o the control address register to read the nest microinstrue-
i T | | ~ .~y i i 3 S S % 5 LR Y A\ \ ]
i fon. Thus a nucromstruction contains bits for initiating microoperaiions 1
i P 3 COSKOT . . 1 \ |
t the data processor part and bits that determine the address sequence for the

control memory.

The next address generator is sometimes called a microprogram
seguencer, as 1t determines the address sequence that s read from control sequencer

. memory. The faddrcss of the next microinstruction can be specified in several
ways, depending on the sequencer inputs. Typical functions of micropro-
gram sequencer are merementing the control address register by one, loading,
imnto the control address register an address from control memory, transfer-
ring an external address, or loading an initial address to start the control
| operations.

' The control data register holds the present microinstruction while
the next address is computed and read trom memory. The data register is
sometimes called a pipeline register: 1t allows the exccution of the micro- pipeline register
operations specified by the control word simultancously with the genera-
tion of the next microinstruction. This configuration requires a two-phase
clock, with one clock applied to the address register and the other to the
data register.

The system can operate without the control data register by applying a
single-phase clock to the address register. The control word and next-address
information are taken directly from the control memory. It must be realized
that a ROM operates as a combinational circuit, with the address value as
te input and the corresponding word as the output. The content of the spec-
tfied word in ROM remains in the output wires as long as its address value
remains in the address register. No read signal is nceded as in a random-ac-
cess memory. Each clock pulse will execute the microoperations specified by
the control word and also transfer a new address to the control address regis-
er. In the example that follows we assume a single-phase clock and therefore
%2 do not use a control data register. In this way the address register is the
only component in the control system that receives clock pulses. The other
'Wo components: the sequencer and the control memory are combinational
fireuits and do not need a clock.

g

5
i
i

1
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mapping

8.2 Address Sequencing

Microinstructions are stored in conim-] memory i groups, xa":;‘n_ cach grom
specifying a routine. Each computer instruction has IS OWN MiCtoprogr,.
routine in control memory to generate the microoperations that execy:; e
instruction. The hardware that controls the address sequencing of t; .
trol memory must be capable of sequencing the microinstructions wis-
a routine and be able to branch from one routine to another. To appreciz:
the address sequencing in a microprogram control unit, let us enumerass -,
steps that the control must undergo during the execution of a single compuze-
instruction.

An initial address is loaded into the control address register when pawEr
is turned on in the computer. This address is usually the address of the 3=
microinstruction that activates the instruction fetch routine. The fetch rous=s

L ER RN 1R

may be sequenced by incrementing the control address register through

—bi ke

-

rest of its microinstructions. At the end of the fetch routine. the instruction &
in the instruction register of the computer.

The control memory next must go through the routine that determin
the effective address of the operand. A machine instruction may have bis
that specify various addressing modes, such as indirect address and inds
registers. The effective address computation routine in control memory &2
be reached through a branch microinstruction, which is conditioned on £
status of the mode bits of the instruction. When the effective address con-

putation routine is completed, the address of the
memory address register,

The next ste
instruction fetched
in processor regist
Each instruction

-

Opemd 1S avai]abt-’ U

P Is to generate the microoperations that execui L
from memory. The microoperation steps to be gener™
ers depend on the operation code part of the instrecti®
has its own microprogram routine stored in @ give? e

tion of ¢ i o
t Lﬁer! memory. The transformation from the instruction cod¢ -
0 an address in control mem

J W % . - mafarped w

as a mapping p ory where the routine is located is I

IOCESS_ A mappin . _._-1'_:“5 s

: - ; rocedu at transiot= =
Instruction code into a cop i re is a rule th -

; r ﬂ,‘_‘ B
trol memory address. Once the required rOU%
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hed. the micromstructions (hat exe
aehed:
I

Clle ”IL"
centing the control

et ; . address repigier
Y Jicrouperations will depend on viltiey
ol ‘_1,“.,_\.. Microproptams that cploy syl
"'-":‘::u.l. for storing the return address, Re
l:.};l'ﬂ pecause the unit has no yy, riting o
. When the exeeution of the ingtrye
o (he feteh routine. This i

strnetion may be sequenee
hut sometimes (e sequence
of certain stitus hig

. S A processor
Moutines wi

W require an external
W addiesses cannof e stored in
pability,

tion ig complete
accomplishye
L microinstruetion 1o the fiyg

o eontrol must returm
uting an uncondition|
leteh voutine, 1y stmmniary,
deontrol memory ate:

\l h}' L‘."'\L‘lc

|-||--.m.;l ] address of the

fhe address sequencing capabilitics requigeq iy,
| Incrementing of the control addresy register

lhlm.”.d”"m"l branch o conditiong| branch, depending on status bit
conditions. .

1 i s i L) Oe |..-.. > " i i -

. A mapping process from the bitg of (1, mstruction to an address for
control memory,

1. A tacility for subroutine call 4 return

Figure 8.2 shows a block d;
ciated hardware needed for se
microinstruction in control m

agram ol a control memory and the asso-
lecting the next microinstruction address, The
cmory containg
crations in computer registers and other
the next address is obtained, The
which the control addre

asetofbits to initiate microop-
bits to specify the method by which
agram shows four different paths from

88 register (CAR) receives the address. The incre-
menter increments the content of the control

(he next microinstruction in sequence. 13y
(he branch address in one of the

address register by one, to select
anching is achieved by specifying
ficlds of the microinstruction. Conditional
branching is obtained by using part of the microinstruction (o select specific
status bit i order o determine its condition. An external address 1s trans-
ferred into control memory via a mapping logic circuit. The return address
for a subroutine 1s stored in a special register whose value is then used when
the microprogram wishes to return from the subroutine.

Conditional Branching

The branch logic of Fig. 8.2 provides decision-making capabilities in the
control unit. The status conditions are special bits in the system that provide
parameter information such as the carry-out of an adder, the sign bit of a
number, the mode bits of an instruction, and input or output status condi-
tions. Information in these bits can be tested and actions initiated based on
their condition: whether their value is 1 or 0. The status bits, together with
the field in the microinstruction that specifies a branch address, control the
conditional branch decisions generated in the branch lugic.

The branch logic hardware may ‘hf-‘ impig@ﬂlﬂd In a variety of ways,
The simplest way is to test the specified C(l.ndltl(m and bmnct! to tIh{:‘ indi-
cated address if the condition is met; othcm'ls?, the address register is incre-
mented. This can be implemented with a multiplexer. Suppose that there are

speciul bits

branch logic

i JQ‘
P

Scanned by CamScanner



NI AN A A

i\

™ 5 Th!
|
|
;I IR I RS :
i l |
' 5'
Mgy
VTS
1 |
g | MUy
y Somn » Multplesers
!-'3_-_'. w it
| I
A e |
5"'""1“"1[‘ |
TeRintey '
(SHR)
% ‘ Conta] address registes -______I
ok ik, Contl d: l\: egiste
, (CAR)
' - — e e o (T ——
| lncwmmg
——— —__.T
i s =
l‘ Control memaory

SSRNT A staus

hit

Microoperations
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FIGURE 8.2 Selection of address for control memory.

cight status bit conditions in the system. Three bits in the microinstructign
are used 10 spectfy any one of eight status bit conditions. These three PIFS
provide the selection variables for the multiplexer. If the selected status bit1s
m the 1 state, the output of the multiplexer is 1; otherwise, it is 0. A 1 output
w the muluplexer generates a control signal to transfer the branch ﬂ@dfcss
trom the microinstruction into the control address register. A 0 output It the
multiplexer causes the address register to be incremented. In this conﬁgurl';l-
tion, the microprogram follows one of two possible paths, depending onEr
value of the selected status bit.

An unconditional branch microinstruction can be implemenwd b ﬁ
loading the branch address from control memory into the control Elddrﬁ?c
register. This can be accomplished by fixing the value of one status bit at

4
|
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8.2 Address Sequencing 241

g:
K
i

_ppofthe multiplexer, so it is always equal to 1. A reference to this bit by

ﬁ sanus pit select lines from conlrol. memory causes the branch address to
. joaded into the control address register unconditionally
E‘: (O .

ﬁﬂappiﬂg of Instruction

s special YPe of branch exists when a microinstruction specifies a branch
s th- first word in control memory where a microprogram routine for an
:.ﬂSrrUclion is located. The status bits for this type of branch are the bits in
e operation C}Jde part of the instruction, For example, a computer with a
mple instruction Ff}rmat as shown in Fig. 8.3 has an operation code of four
pits which can specify up to 16 distinct instructions. Assume further that the
control memory has 123 words, requiring an address of seven bits. For each
operation co@e thcrc_ CeXISts a n_licroprogram routine in control memory that
sxecutes the instruction. One simple mapping process that converts the 4-bit
operation code to a 7-bit address for control memory is shown in Fig. 8.3.
This mapping consists of placing a 0 in the most significant bit of the address,
ransferring the four operation code bits, and clearing the two least signif-
icant bits of the control address register. This provides for each computer
struction a microprogram routine with a capacity of four microinstructions.
If the routine needs more than four microinstructions, it can use addresses
1000000 through TT1TTT1L. If it uses fewer than four microinstructions, the
unused memory locations would be available for other routines.

One can extend this concept to a more general mapping rule by using
2 ROM to specify the mapping function. In this configuration, the bits of the
instruction specify the address of a mapping ROM. The contents of the map-
sing ROM give the bits for the control address register. In this way the micro-
;;m._;ram routine that executes the instruction can be placed in any desired
location in control memory. The mapping concept provides flexibility for
adding instructions for control memory as the need arises.

The mapping function is sometimes implemented by means of an inte-
zrated circuit called programmable logic device or PLD. A PLD is similar to
ROM in concept except that it uses AND and OR gates with internal electronic
fuses. The interconnection between inputs, AND gates, OR gates, and outputs
can be programmed as in ROM. A mapping function that can be expressed in
terms of Boolean expressions can be implemented conveniently with a PLD.

Opcode

Computer instruction: 1011 address

Mapping bits: 0jx x X x|0 0

r T e e e

Micromstruction address: | 0 1 01100

e

FIGURE 8.3 Mapping from instruction code to microinstruction address.

Al

r“".“?'-“""c:“” i S
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Subroutines are programs that are used by other routines to accomplisy ,
particular task. A subroutine can be called from any point within the Maip
body of the .';'.-{=‘7'.f.|rﬂz'-2g ram. Frequently. many miCTOPrOZrams Contain ideps
s of code. Microinstructions can be saved by employing Subroy.
tines thar use common sections of microcode. For example, the sequencs
of microoperations needed to generate the etfective address of the Operang
for an imstruction is common to all memory reference instructions. Thi
seguence could be 2 subroutine that is called from within many other routines
tor execute the effective address computation.

.“-LICI'D?E'OETL-:TI:& that use subroutines must have a provision for storing
fhe return address during a subroutine call and restoring the address during g
urn. This may be accomplished by placing the incremented out-

put r‘-" 7T : control address register into a subroutine register and branching

=1
=~
{H

-

ning of Lhe subroutine. The subroutine register can then become
ferring the address for the return to the main routine. The
ssructure a register file that stores addresses for subroutines 1s 1o
“‘f.-}'l'"‘ S 1 Jaat-m. nrst-crut{ LIFO) stack The use of a stack in
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Microinstruction Format

Nrructon The microinstruction format for the control memory 1s shown in Fig. 6.

The 20 bits of the microinstruction are divided into four functional parts. The

three fields FI, F2, and F3 specify microoperations for the computer. The CD

ficld selects status bit conditions. The BR field specifies the type of branch to

be used. The AD field contains a branch address. The address field is seven
bits wide, since the control memory has 128 = 27 words.

The microoperations are subdivided into three fields of three bits each.

The three bits in cach field are encode

crations as listed in Table 8.1. This giv

rarnons

d to specify seven distinct microop-

€s a total of 21 microoperations. No
more than three microoperations can be chosen for a microinstruction, one

from cach field. If fewer than three microoperations are used. one or more of
the fields will use the binary code 000 for no operation. As an illustration. 2

microinstruction can specify two simultaneous microoperations from F2 and
F3 and none from F1.
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FIGUREZS Mi:ro}r;s*m_sc‘b“ Code §
S L0GE Tormat (20 C-".Ej

DR « M4 R} with F2 = 00
and PC«— PC+ 1 with F3 = 191

+0 nine bits of the microoperati o R )
'Tnurritam 10 realize that w.'apor m];m ﬁi‘d’_“‘m then be 000 100 101. It is

o i = N
imp! od simultzneously. For o rf-; conflicting microoperations cannot be
enC]111CU 5 - S +* - ke &
D ming becatiss it e - Ticrooperation field 010 001 000
has no A Specinies the operations to clear AC to 0 and sub-
iract DR from AC at the same time.

43 . 17 (] s Pyt 1 ) = a u

Each micr ')u.;iuduon In Table 8.1 is defined with a register transfer
swicmcni and 15 assigned 2 symbol for use in a symbolic microprogram. All
1raqsicr-l}'pc microoperations s;.*m}nols use five letters. The first two letters
des gnaFc the source register, the lhlrd letter is always a T, and the last two let-
ters designate the qestlniillljll register. For example, the microoperation that
specifies the transfer AC «— DR (F1 = 100) has the symbol DRTAC, which
stands for a transfer from DR 1o AC.

The CD (condition) field consists of two bits which are encoded to
specify four status bit conditions as listed in Table 8.1. The first condition is
always a 1, so that a reference to CD = 00 (or the symbol U) will always find
the condition to be true. When this condition is used in conjunction with the
BR (branch) field, it provides an unconditional branch operation. The indirect
bit / is available from bit 15 of DR after an instruction is read from memory.
The sign bit of AC provides the next status bit. The zero value, symbolized by
7, is a binary variable whose value is equal to | if all the bits in AC are equal
(0 zero. We will use the symbols U, 1, S, and Z for the four status bits when
we write microprograms in symbolic form. . . o

The BR (branch) field consists of two bits. It is used, in conjunction
with the address field AD, to choose the address of tlhc ng;}rzc;q:;;?ru(?}ligi
As shown in Table 8.1, when BR = 00, the control per  jump

; R By el 1 branch), and when BR = 01, it performs a
operation (which is similar to a branciij, € e Al

: ‘on. The two operations arc identical except
call to subroutine (CALL) operation. i : 3 S
.  the return address 1n the subroutine register
that a call microinstruction stores the Tt
i et 2 Jtions depend on the value of the CD field. If the
T e i I CD field is equal to 1, the next address
status bit condition :-;pt.'}':lilt.‘d in l1‘L. : " o address register CAR. Otherwise,
in the AD field is transferred to the cot

CAR 1s incremented by 1.
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Microprogrammed Control

Ean:

et S

Symbols and Blnary Code for MICrﬂlﬂaan hrm ; JLJ

TABLE 8.1 e
Fvl o —‘;—1 Ill:{:;l-[;dl'.i“t)li _ 5_}{:]}:11[7
T Nene NP
001 ACe—AC+DR ADD
010 AC 0 CLRAC
0l ACe—AC+] INCAC
100 AC — DR DITAC
01 AR — DR~ 10) DRRTAR
10 AR—PC PCTAR
11 M[AR] — DR _\*_-_fﬂl'l I
F2 Microoperation Symbal
000 None NOP
0ol AC —AC = DR SUR
010 AC —ACv DR Ol
011 AC —AC A DR AND
100 DR —M[AR) READ
101 DR —AC ACTDR
L0 DR — DR + | INCDR
111 DR(0 = 10) «— PC PCTDR
F3 Microoperation Symbol
000 None N()_p -
001 AC«—ACD DR XOR
010 ACeAC COM
01l AC e—shlAC SHL
100 AC —shr AC SHR
101 PC—PC+1 INCPC
110 PC—AR ARTPC
111 Reserved
w“ Comments
= Abvays=] Unconditional branch
! DR(15) Indirect address bit
0. baans) Sign bit of AC
l “AC=0

Zero value in AC

—
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R Svmbaol Function

1

00 IMP CAR —AD if condition = |
CAR « CAR + 1 if condition = 0

} 8.3 Microprogram Example 247

o1 CALL [-AR —AD, SBR - C !R + 1 if condition = 1
CAR «— CAR + 1 if condition = 0

10 RET CAR «— SBR (Return from subroutine)

11 MAP CAR(2-5) «— DR(11-14), CAR(0.1,6) «0

The return from subroutine is accomplished with a BR field equal to
10. This causes the transfer of the return address from SBR to CAR. The
mapping from the operation code bits of the instruction to an address for
CAR is accomplished when the BR field is equal to 11. This mapping is as
depicted in Fig. 8.3. The bits of the operation code are in DR(11-14) after an
instruction 1s read from memory. Note that the last two conditions in the BR
field are independent of the values in the CD and AD fields.
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8.4 Design of Control Unit

The bits of the microinstruction are usually divided into fields, with each
ficld defiming a distinct, separate tunction. The various fields encountered
in instruction formats provide control bits to initiate microoperations in
the system, special bits to specify the way that the next address is to be
evaluated. and an address field for branching. The number of control bits
that initiate microoperations can be reduced by grouping mutually exclu-
sve variables into fields and encoding the & bits in each field to provide 2k
microoperations. Each field requires a decoder to produce the correspond-
ing control signals. This method reduces the size of the microinstruction
bits but requires additional hardware external to the control memory. It also
increases the delay time of the control signals because they must propagate

through the decoding circuits.
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Multiplexers

y
Load
> AR <1 T

FIGURE 8.7 Decoding of microoperation fields.

The encoding of control bits was demonstrated in the programming
cxam_p!e of the preceding section. The nine bits of the microoperation field
are divided into three subfields of three bits each. The control memory outp:
of each subficld must be decoded to provide the distinct microopémliom.

The outputs of the decod in tt
€IS are connected to the appropriate inputs in
processor unit, FRrRL-i

18 of F fields bFlgurc 8.7 shows. the three decoders and some of the connections th
:}LH; t rz macllc fmﬁ’p the}r"ﬁutputs‘ Each of the three fields of the microinstne

T Efd ;:n(l; y avaIIablF: in t.he output of control memory are decoded with 2

nected to (:hsr . pl'OVI.de cight Outputs. Each of these outputs must be o

specified in T. I;TIOpger Circuit to initiate the corresponding microoperatiot ﬂ

pulse transjt'a : ,'l' For example, when F = 101 (binary 5), the next Cl@:

DRTAR in T;?)T tgdnﬁer.s the content of DR (0-10) 10 AR (symboliz *I

from PCto AR ). Similarly, when /7 < 11 (binary 6) there is 3 1%

0 AR (symbolizeq by PCTAR). As shown in Fi g. 8.7, outputs 3%
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8.4 Design of Control Unit 258

(8 The muluplexers selec
ry AR

t the mtormation trom DR
ive and from 2C when outpuy s ¢ active
ith a clock pulse transition only w
| L o

e aCHIVE. The other autputs of the
1T b

when output S is
The transter into AR oceurs
S or output 6 of the decoder

Wt nitiate transters between
.
an be designed

hen output

decoders )
isters must be connected i asimilar tashioy

The arithmetic logie shift unit ¢
<20, Instead of using gates 1o generate the ¢
symbols AND. ADD, and DR iy Fig. 519, these inputs will now come from
he outputs of ”I“-' decoders assoctated with (he symbols AND, ADD, and
DRTAC. rcsp;cm‘ci} vas shown i Fig. 8.7. The nth;:r outputs of the decoders
that are assoctated with an 4¢ operatio

s . i nmust also be connected to the arith-
metic logic shift unit in 3 similar fashion.

Microprogram Sequencer

wani?
[

as in Figs, 5,19 and
ontrol signals marked by the

The basic components of g mic
memory and the circuits thyy g
part is called a microprogram
constructed with digit

foprogrammed control unit are
lect the nexy
cquenc
al functiong o
just as there are large ROM units
are general-purpose

the control
address. The address selection
er. A microprogram sequencer can be
Suit a particular application. However,
available ip integrated circuit packages, so
sequencers suited for the construction of microprogram
control units. To guarantee wide range of acceptability, an integrated cir-
cull sequencer Must provide an interng| organization that can be adapted to a
wide range of applications.

The purpose of a microprogram sequencer is to present an address to
the control memory so that a MICroinstruction may be r
next-address logic of the sequencer dete
be loaded into the control addre
is guided by the next-addre

cad and executed., The
rmines the specific address source to
ss register. The choice of the
ss information bits that the
from the present microinstruction. Commerci
the unit an internal registe

address source
sequencer receives
al sequencers include within
r stack used for temporary storage of addresses
dunng microprogram looping and subroutine calls. Some sequencers provide
an output register which can function as the address register for the control
memory.

To tllustrate the internal structure of a typical microprogram sequencer
we will show a particular unit that is suitable for use in the microprogram
computer example developed in the preceding section. The block di

agram
of the microprogram sequencer is shown in Fig. 8.8. The control memory is
included in the diagram to show the interaction b

etween the sequencer and
the memory attached to it. There are two multiplexers in the circuit. Thx. first
multiplexer selects an address from one of four sources and routes it into a
control address register CAR. The second multiplexer tests _thz: \-aiue:- of.a
selected status bit and the result of the test is applied to an input logic cir-
¢t The output from CAR provides the address for the control memory. The

0t of CAR is incremented and applied to one of the multiplexer inputs
and

14

. & 1 i X2r
10 the subroutine register SBR. The other three inputs to multiple:
ber | come

=3
[ =

= A 2 m
from the address field of the present microinstruction, fro
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FIGURE 8.8 Microprogram sequencer for a control memory,

the output of SBR, and from an external source that maps the instruction
Although the diagram shows a single subroutine register, a typical sequence
will have a register stack about four 1o cight levels deep. In this way, a nur-
ber of subroutines can be active at the same time. A push and pop operatior.
in conjunction with a stack pointer, stores and retrieves the return address
during the call and return microinstructions. ,
The CD (condition) field of the microinstruction selectgs one nf!r-;
status bits in the second multiplexer. If the bit selected is equal to 1, ﬂi,
(test) variable is cqual to | otherwise, it is equal to 0. The T Va]u.c lf’_r'i-’w_;
with the two bits from the BR ( branch) ficld go to an input logic F'“"“";i or'-i
input logic in a particular sequencer will determine the type of 0P er?ngf.?-
that are available in the unit, Typical sequencer operations are: lﬂcrr;dresa,
branch or jump, call and return from subroutine, load an cxwma]r‘:h thret
push or pop the stack, and other address sequencing fii’cra!i(fng' “Lrations-
inputs, the sequencer can provide up to ¢ight address sequencing o7

2

i
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B Design of Comtied Uit 257

lm’ll_t.‘ g Input Logic Truth Table fo Mi““”"“ﬂrmn

Hequencer

b Input MUX| o SR
field ly hy I N S /

0 i L 0 0 L () 0

0 0 0 0 | 0 | 0

0 | ] | ] 0 0 0

0 | ] | | () | |

, 0 | 0 X I 0 ()

| l l | X | | 0

Some commercial sequencers have three or four nputs in addition to the 7'
put and thus provide a wider range of operations,

The luplll‘ logic cireuit in Fig, 8.8 s three inputs, oo 1y, and 7, and
thee outputs, Sy, S, and L, Variables §

S : o and S, seleet one of the source
addresses Tor CAR. Variable L enables (he load input in SBR. The binary val-
ues of the two selection variables determine (he path in the multiplexer. For

example, with 8,5, = 10, multiplexer input number 2 is selected and estab-
lishes a transfer path from SBR to CAR. Note that eachy of the four inputs as
well as the output of MUX 1 contains a 7-bit address,

The truth table for the input logic circuit is shown in Table 8.4.
Inputs /; and [ are identical to the bit values in the BR field. The function
listed in each entry was defined in Table 8.1. The bit values for Sy and S
are determined from the stated function and the path in the multiplexer
that establishes the required transfer, The subroutine register is loaded
with the incremented value of CAR during a call microinstruction (BR
= 01) provided that the status bit condition is satisfied (7' = 1). The truth

table can be used to obtain the simplified Boolean functions for the input
logic circuit:

Sl = l’]
Sp= Iyl + 1T
=T

The circuit can be constructed with three AND gates, an OR gate, and an
inverter, - .

Note that the incrementer circuit in the sequencer “! Fig. 3_-8 18:10% a
counter constructed with flip-flops but rather a comhmalmnal‘ cllrxfml con-
structed with gates. A combinational circuit illil‘crcmcnlrc‘r can be dLm.g;ucq by
cascading a series of half-adder circuits (sce Fig. 4.8). 1 }(1)0 O.l"tpllttc'ﬂl :Iy .fl ffm‘!
One stage must be applied to the input of the next stage. Lne INputin the first

ovide the increment-by-
least significant stage must be equal to | 10 provide the y=0ne

Operation,

design of input logic
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10.2 Pipelining

Pipelining is a techniqu
ations. with each subprocess
that operates concurrently with

7ed as a collection of processing segme
flows. Each segment performs partial proc
is partitioned. The result obtained from th

transferred to the next segment in the pi

e of decomposing a sequential process nio suboper-
being executed in a special dedicated seg
all other segments. A pipeline can

P et g Tt Bl
I TXLA)

1,

¥ Vislldl-
nts through which binary informatior

Siaadls

essing dictated by the way the 129
¢ computation in each segment i

-

peline. The final result 1s obtained afie
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330 Pipeline and Vector Processing
«« nassed through all segments. The name pipeline implies
O s i logous to an industrial assembly line. It is charaey, a flgy,
' jon analo ' - Itis
of information g i A P e

ineli eral computatio _
inelines that severa . ML = ] .
51:: <ame time. The overlapping ofcom;'mu{tlon_};made‘pobblblc b:: aSSOCiaH;;
q register with each segment in the pipeline. The registers provide ismatig;
(2 f= :

between each Sef_—'-‘rnent so that each ca_n Df‘.)emte on -dlS]t-Inft i Siml{[wnf—'()m]\,

Perhaps the simplest way of viewing ihe pipe G SEUCONE: 5 10 e
ine that each segment consists of an nput r egister followed by 8 Combinatjgp,
circuit. The register holds the data and the combinational CIrcuit performg the
suboperation in the particular segment. The output of the combinationg Circu
in a given segment is applied to the input register of the next segment. A Clock
is ap}u]ied to all registers after enough time has elapsenfl to_perfonn all Segmen
activity. In this way the information flows through the pipeline one step at time

-The pipeline organization will be demonsrrated_hy means of a sjmp]e'
example. Suppose that we want o perform the combined multiply anq add

operations with a stream of numbers.

Nistic of

an example

A,+B+C, fori=1,2,3,...,7

Each suboperation is to be implemented in a segment within a pipeline. Each
segment has one or two registers and a combinational circuit as showy i

Fig. 10.6. R1 through R5 are registers that receive new data with every clock 1
pulse. The multiplier and adder are combinational circuits. The subopera-

tions performed in each segment of the pipeline are as follows: :

Rl <A, R2 « B, Input 4, and B, i

R3 « Rl * R2, R4 « C;  Multiply and input C,

R5 <« R3+ R4 Add C; to product 1

."

A B C
1

¥ i

P—
wl
M,

( Adder

3

RS

FIGURE 10.6 Example of pipeline processing.
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_—

,.//_-_ . :
ABLE 10.1 Content of Registers in Pipeline Example

S i T

Clock Segment | Segment 2 Segment 3
pulSC " e —
pumber R1 k2 R3 R4 R5
—--'-_-—-___
1 A B, s e -
2 Ay 2 Lh*B, C ~
3 3 L*B, G A,#8,+C,
4 l4 84 LJ. * 83 C3 -’lw*B-,‘{'C.‘
3 45 B L*By € Ay *By+C,y
? o B As* B C; Ay*By+C,
7 1 B, Ag* B Ce A5 * Bg+ C;
8 - *B;, G Ag* Bg+ C,
9 s _

A7 B, +C,

The five registers are loaded with new data every clock pulse. The effect of each
clock is shown in Table 10.1. The first clock pulse transfers A, and B, into R1
and R2. The second clock pulse transfers the product of R1 and R2 into R3 and
¢, into R4. The same clock pulse transfers A, and B, into Rland R2. The third
clock pulse operates on all three segments simultaneously. It places 45 and By
into R1 and R2, transfers the product of R1 and R2 into R3, transfers C, into R4,
and places the sum of R3 and R4 into RS. Tt takes three clock pulses to fill up the
pipe and retrieve the first output from RS. From there on, each clock produces
anew output and moves the data one step down the pipeline. This happens as
long as new input data flow into the system. When no more input data are avail-
able, the clock must continue until the last output emerges out of the pipeline.

General Considerations

Any operation that can be decomposed into a sequence of suboperations of
about the same complexity can be implemented by a pipeline processor. The
technique is efficient for those applications that need to repeat the same task
many times with different sets of data. The general structure of a four-segment
pipciinc is illustrated in Fig. 10.7. The operands pass through all four segments
in a fixed sequence. Each segment consists of a combinational circuit S; that

Clock

—
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332 Ppaiine and Vector Processing
data steeam flowing through the iy The
e R that hold the ntermediate resypy T
i e sonarated by registers R that 5 by,
ments are sepacated by 1oy * anil glagies Gider tha o o0
between adpacent stages under (h O g

pertorms a suboperation Over the

the stages. lnformation flows ' :

& T (. ) MOLSTY, Ul } 1
R common clock applied to all the registers sunultancously \‘nT define g 4,
ormed coing [hmu_ull. all the sepients i the Inl‘u'
a pipeline can be Hlustrated with aspace-rime (|,

coment utilization as a function of g,

Ay
line

i mp <k o e irate
i i Bl e ot e O SRS

the total operation pert
S g-{ime Ihe behavor ol d!”ﬂ“l

diueram This 1 a diagram that shows the s Ratem ne. T
: pient pipeline is demonstrated iy Fig. i §

space-time diagram of a tour-s¢ . .
The horizontal axis displays the tne clock k‘.,\'t'it'-*‘ and the vertjgy) Xy
sives the segment number. The diagram shows six tsks 7y theoup), CX-
“uted in four segments. Initially, task 7 1s handled by segment |, Aller the

st clock, segment 2 is busy with 7, while segment Lis busy with ), !k

Continuing in this manner, the fiest task 7' ts completed after the foygy), ulmi

cvele. From then on, the pipe completes a task every clock eycle, Ny m.m;_-;

how many segments there are in the system, once the pipeline is full, en

only one clock pertod to obtain an output. '

Now consider the case where a A-segment pipeline with g ¢lock cyele

time 7, s used to execute n tasks. The first task 7' requires a time L'1-|u-,||

o “; to complete its operation since there are & segments in the pipe. The

remaining 7 — | tasks emerge from the pipe at the rate of one sk perclock

cycle and they will be completed after a time equal to (n = 1y Therefore |

complete n tasks using a k-segment pipeline requires & + (n - 1) clock c}r.;;c\ |

For cxamplvle. the diagram of Fig. 10.8 shows four segments and six tasks, 1 hC. |

tme rgqmred to complete all the operations is 4 + (6 — 1) = 9 ¢lock cycles 'i

as indicated in the diagram. T a

Next c?nsider a nonpipeline unit that performs the same operation

- a:nd takes a time equal to r, to complete each task. The total time required
speedur for n'msllis 1s nt,. The speedup of a pipeline processing over an equivalent
nonpipeline processing is defined by the ratio

PR RER TN RN WA TSP~

13
¥
.
.
.

nt

3= r |
(k+n-1 ),
As the num s
] a?);gictﬁsl(h ﬁncre?ses, n becomes much larger than & - |, and
o es the va 3 R > 4
L ue of n. Under this condition, the specdup
| | 2 ‘]
___-__l 3 4 3 6 7 8 9 ti;
Ses arr }
i E'-—E__ 7, I T, T T » Clack cycles 3
- o : L i
- T T B f
. T, 7 T - i
3 i s S O R 5
T .
-—-_.____-——-_._.__——._.._.__,..____J'______I.z_‘_ ?; ?‘ rs 7-,

FIGUR i
E10.8 Space-time diagram for pipeline.
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e assume that the time it taKes 1o procece ; : -
W o O Process atask is the same in the pipeline
will have t =kt

» Including this assumption, the

-4 nonpipeline cireuits, we

oadup reduces 10
™~ i

This shows that the theoretica] maximum speedup that a pipeline ¢
is & where & 1s the number of segments in the pipeline,

To clanfy the meaning of the Speedup ratio, consider
numenical example. Let the time it takes to process a subope
segment be equal to 7 = 20 g, Assume that th
ments and executes 7 = 100 tasks in se

k= 1 =)= (4 +99) X 20 = 2060
x 20 = 80 ns. a nonpipeline svsten

an provide

the following
ration in each
¢ pipeline has & = 4 seg-
quence. The pipeline system will take
NS to complete. Assuming that t,=kt =4

1 requires nktp =100 x 80 = 8000 r{s to
complete the 100 tasks. The speedup ratio is equal to 8000/2060 — 3.88. As

the number of tasks increases. the speedup will approach 4, which is equal
10 the number of segments in the pipeline. If we assume that 1, = 60 ns, the
speedup becomes 60/20 = 3.

To duplicate the theoretical speed advantage of a pipeline process by
means of multiple functional units. it is necessary to construct & identical
units that will be operating in parallel. The implication is that a k-segment
pipeline processor can be expected to equal the performance of k copies of
an equivalent nonpipeline circuit under equal operating conditions. This is
Hlustrated in Fig. 10.9, where four identical circuits are connected in paral-
lel. Each P circIlit performs the same task of an cquivalen.t pipc].ine.circuit.
Instead of operating with the input data in sequence as in a pipeline, the
parallel circuits accept four input data items Simultaneoﬁusly. and perform fm_lr
tasks at the same time. As far as the speed of operation is conf:crt_led,_lhls
Is equivalent to a four segment pipeline. Note that the four-unit cm.:ultl of
Fig. 10.9 constitutes a single-instruction multiple-data (SIMD) organization
since the same instruction is used to operate on multiple data in E)z}ralllcl. |

There are various reasons why the pipeline cannot operate at llls ::;::;:
mum theoretical rate. Different segments may fake dli}‘crctm m::? ti?c time
Plete their suboperation. The clock cycle must be F:host[-::;f:‘:}’lt“:l(:isc causes all
delay of the segment with the maximum propagatl?ﬁ lI % Moreover.it is
®ther segments to waste time while Waing b e Ct}'i:;' same time (icl:iY
" a!v.-;;\;,rs correct to assume that a nonpipe Clrc?:hha?ntﬁ:rm‘cdiatc registers
3\5 that of an equivalent pipeline .Cir?u;:;ilM\i;?’cﬁ C'lI'ICI.lSl_lll”}’ be constructed

g : = I 5 . 5 . "
e;::;;f; t:; I;eec(iaelit;?n:t?::lillc cl::'];lﬁ] Nevertheless, the P‘ipcllf“—‘ﬂ:i‘i:‘:]‘:'*::;
Provides a faster operation over a purely sc?al sequence even g
Imum theoretical speed is never fully achieved.

10.2 Pipelining 333
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Bipeline and Vector Processing

! ‘r.-::
| |
| |
f.. et

| |

; !

| 2 1 P,

|
|
i !

|

FIGURE 10.9 Multiple functional units in paralle|,

There are two areas of computer design where the pipeline
tion is applicable. An arithmetic pipeline divides an arithmetic ¢
suboperations for execution in the pipeline scgmcnts: AN instruction
line operates on a stream of instructions by overlapping the fetch, g,
and execute phases of the instruction cycle. The two types of pipeline

explained in the following sections.

10.3 Arithmetic Pipeline

Tganiz,.
pcrﬂli(}n mm
Pipe.
Cr}de‘
5 are

Pipeline arithmetic units are usually found in very high speed computers,
They are used to implement floating-point operations, multiplication of fixeg.
point numbers, and similar computations encountered in scientific prob-
lems. A pipeline multiplier is essentially an array multiplier as described in
Fig. 10.10, with special adders designed to minimize the carry propagation
time through the partial products. Floating-point operations are casily decom- |
posed into suboperations as demonstrated in Sec. | 1.5. We will now show an
example of a pipeline unit for floating-point addition and subtraction.

The inputs to the floating-point adder pipeline are two normalized

floating-point binary numbers.

X=4x24
}/-:szb

A and B are two fractions that represent the mantissas and « and b are the

exponents. The floating-point add;

between the segments to store
are performed in the four segments are:

1. Compare the exponents:

2. Align the mantissas,

3. Add or subtract the mantissas,
4. Normalize the result,

tion and subtraction can be performed in
four segments, as shown in F ig. 10.10. The registers labeled R are placed

intermediate results, The suboperations that -
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A IOAE the provedure \“"“h“\\{ W the
s srialions t

Ty
_‘]_._.5: AR baka et ‘J‘u?\: Kl\\‘\i t\\

-y
# T as The @ ponents

Rowehatt of Fig, 1015 bt
teduce the “xecution time ot the
% sderence. The laneer xpon ared by 511!*(1:wtm§1 them o deter-
et r:“‘a:'.f\"'""" e - e .. L= N ‘:l‘t 1\. H:h"l" .

e ol e TSR as the exponent ol the
A e oxponent ditference determipey by e exponent ol th
L. *F X i
st be

A Comp

+od with the smaller exponent (e e A
sstad WA shtted (o the tieht,
SR8 1 she :
S - shonlyd b ol
anad as 2 combmationg) NN wWduee ) L

vethe
segment 3, e w
S, the Mantiss
mereme

n alignment of the o mayg Lil -”I‘is pll'_nl_-
. dthat the slaft
shatt time, The
sultis notmalized
Aol the sum or difter-
IRT0s m the 1y 1.111‘::\1 o vu.-:. -”- 1} ioathiow
e e RHSSR determines the number
ot shifts In the mantissa and the nubey that must e sible
s 2xponent.
"7 The following numerical SNample may clygipy
womad 1n each segment. For stplicity, 7
ehouch Fig. 10,10 refers to binary
:;;in;:-l‘t"‘:m numbers:

iomaohe o

ifted right and the exponey
< the number of leading

acted from
the suboperations

decimal numbers,
he two normalized

7

W use
numbers. Consider {

Ja o
1

W

N=00304 < 108
F=0.8200 102

The two exponents are subtracted in the fipst seement to obtain 3 < 2 = The
larger exponent 3 1s chosen as the exponent of the result. The ne

i ; XUsegment
shifts the mantissa of ¥ to the right to obtain

X=0.9504 x 10}
Y=0.8200 x 103

This aligns the two mantissas under the same expon ent. The

addition of the
two mantissas in segment 3 produces the sum

Z=1.0324 x 10°

The sum is adjusted by normalizing the result so that it has a fraction with
nonzero first digit. This is done by shifting the mantissa once to the right and
incrementing the exponent by one to obtain the normalized sum.

Z=1.0324x 10*

The time it takes for an instruction to complete cxccutigm in one S?m-c{“:::
3 pipeline is called a pipeline cycle. Thus, at the em? of every p:.p;. lm.;iun,
n instruction advances to the next segment in the pipeltte. Tie L??F:.‘oim
shifter, adder-subtractor, incrementer, and decrf’mc.n o 1th i.lﬁ;‘rllittcpﬂm“
Pipeling are implemented with combinational circuits. Sum;{‘}‘;('lﬁ L‘, =80 ns,
delays of the four segments are t, = 60 ns, 1, = i :T\ e cl.t;c‘: cycle 18
d the interface registers have a delay of 7, = 10 ns. 10

: ating-point
. ipeline floating-p
thosen 1o pe t,=t3+1t,=100 ns. An equivalent nonpip
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Blatiblaasin

fogpniniils | /

-

Compare Ditlerence
| exponenis
.'\L‘_L‘_llli"“ h\ _.‘""*‘;L‘llﬂn

oS g
|

Y ). e R
s TR | Al |
Y .
Y

Add or subtract
mantissis

y l

r R R

| |

- Adjust Normalize
~exponent result

Segment 3:

Segment 4;

R i R AT

FIGURE 10.10  Pipeline for floating-point addition and subtraction
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104 Instruation Pipeling a7

tractor WL Bave s daly g ” [P ——
b Yy lime b byt bty hy 1= 120 s, In

Jor-= . i ;
‘-"1,‘ qo the pipe Hned adder Ty Apeedup of 00000 = 29 aver the non-

i v
ﬂliu']i’llt*li adder,
I'r'l -

0.4 nstruction Pipeline

eline lnut‘.t_‘:p.'ii_t’li', CHIEOCC noy| “”IV
1' ¥

o et i wsl-|lllj\u |j|:¢l|urlm|1 PIpeline pends comsecutive nstractions
ot pemory .\x |‘|: t I1m VIOL h_».lluvl'lcm-i me heing exeented in other
epments Fhis causes the e o fetel mnd exeenie plises 1o overlap and
!('II-HIIH 'ihllllll:fllli‘llll.'i :ll!ll_‘nlllnll!i One Ponsithle ‘ll}-'lt"'.-licull ,Il,.,.m.i,m,l‘ with
[y seheme i |J|ml R nstretion imuy epe o hnlmil'lll uul.nllll-u-c;urnvv In
fhat ¢ane the pipeline must he emptied gy 4y the nstraetions lhlm have hL-vn
| from memory after the hranely MSEEUCHon mst he t“‘l"ll.‘lill‘ll

Constder i vlumpuii'l With un ISC o letel ll1|i1lln'nl Pl .'Ill“ll'lll‘|lli!ll
execntion unit ‘h'“”!'”vl,l 0 provide u two seEment pipeline, e Illl.‘.iil'lll;lillll
fetch segment can be .““I.'lﬂlw“h.‘! by means of o first-in | (irst nuli (110
puller, This s atype ot that forms a quene ther than l; stuek, Whenever
fhe execution uvibIs nobusing memory, the control inerements

 Hiw aclilieg v the program
counter anduses s address value 1o read consecutive nstruetions from

pemory. The mstruetions are inserted into the FIVO bufler so th
he executed o iestan, fiestout basis, Thus an insteetion stie

W the diti strenm bot in the instrue-

et

at they can

. - . ) i ean be
placed it quene, wiiting tor decading and processing by the execution Sep-

ment. The mstruetion strenm quenng mechansm provides an ellicient way
for reducing the averape aceess time o memory {of rending. mstructions,
Whenever there 1s space incthe FHEO butler, the control unit initiates the next
mstruction feteh phase. The bufler acts as a quene from which control then
extracts the mstructions for the execution unit,
Computers with complex instructions require other phases in addition
y the feteh and exceute to process an struction completely, nthe mos mstruction ¢yele
to the fe | te ! st mpletely, tn ( truction cyel
peneral case, the computer needs to process cach mstruction with the follow-
mg sequence of steps.
1. Feteh the mstruction from memory.
2. Decode the instruction,
b, Caleulate the effective address.
4. Feteh the operands from memory.
S, Execute the instruction.
6. Store the result in the proper place. |
~ < instruction pipeline
( will prevent the instruction | .ll.
ay take different
are skipped
loes not need

¢ memory
is finished

There are certain difficulties that Wi -
from operating at its maximum 1':.!9,.1)111::1';111 h:m!::l:‘:}':l‘:m“‘.
times to operate on the incoming informiation. = ;)rliw-.“'"?“"”“"
o certain operations. For example, i register mode | “.u‘ s
i effective address caleulation, Two oF more 5‘:}"1‘,.“5[ {mil‘ another
access at the same time, causing one segmen! g
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IR g e .
tor P . Aemon ACCESS m"m:::,:lkq:::1“:!?::-”1'0s resolye
with the n‘u‘"‘r-“?ﬂ_ for qecessing nstruc ; ‘-1 : i ;d.m wp;”ﬂlc m‘,n 1"'“?_3 :
o MEMo I‘H“_- tion word and a data word can be reyqg Simug Ty
ay, an nstruct! "'"’-‘fm*:
¥

In this W modules.

tion pipeline will be most cefficieny

; e I!.Ih 1
ts of equal duration. The tim, , € gy,

from (we different :
The design of
o is div ided ‘
function depet

an instruc

o 5(‘1}1]1‘&1 S

gron €V¢ 1ds on the instruction and the gy, T T
(o fulfill 18

T.'li\'i‘-“ 1o '[ll]

! Four—Segment instruction Pipeline

e:

Examp .
of the instruction ¢an be combined With g
€ gal.

: Ihn dccﬂding ) i < . <
1al the idress nto one ngIIILI]l. Assume fu.]'l]lc]- ﬂ'la'[]. gy,
N0gy ¢

tions place the 1‘65}111 Into a processor rcgiﬁ_‘“ﬁf S0 that the ;

and storing of the result can be combined intg one s
instruction pipeline into four segments.

Figure 10.11 shows how ttu..' in.slructicrm. cvcle ‘in the Cpyy b

wod with a four-segment pipeline. While an instruction jq 3. °

: gment 4, the next instruction in sequence is busy fetchin[ﬂ:

Assume {l €
jation of the cffective ad

the instruc NSty

Eh'lt'; 1

ton axecution
This reduces the

I'ﬂ'l"ff'k‘
executed n 8¢ ; el
anerand from memory in segment 3. The cflective address may pe ¢y,
lated in a separate arithmetic circuit for the third instruction. and Wheneg
e memory is available, the fourth and all subsequent instructions ¢y be
fotched and placed in an instruction FIFO. Thus up to four suboperation ;-

the instruction cycle can overlap and up to four different instructions cay b,

in progress of being processed at the same time.

Once in a while, an instruction in the sequence may be a program
control type that causes a branch out of normal sequence. In that case
pending operations in the last two segments are completed and all infor-
mation stored in the instruction bufier is deleted. The pipeline then restans
from the new address stored in the program counter. Similarly. an interrupt
request, when acknowledged, will cause the pipeline to empty and start again
from a new address value. |
~ Bigure 1012 shows the operation of the instruction pipeline. The
time in the horizontal axis is divided into steps of equal duration. The fou
segments are represented in the diagram with an abbreviated symbol,

. Flisthe seament that fetches an instruction.
% Tk ¥ e
2. DA i the segment that decodes the instruction and calculates 1
effective address,
3. FOis the e i
Ois the segment that fetches the operand.

4. EXisthe o
S the scgment that executes the instruction.

It is assuy sog S0
T “lf.‘d o) )S'.‘

that the operatian |
peration iy F| hsené
B and FO ¢; i ; - e Iy the 802
of a branch, mstruction, eg an proceed at the same time. "

. s
?n step 4, nstruction | _Ch segment operates on different instnit‘““:;nT for =
Mstruction ) i being fe . bq:ng executed in segment EX: ‘hF o odedit
Segment DA: g ; § ‘etched in segment FO; instruction 3 is being " g
T truction 4 js being fetched from memory i1 segm® " 4

Scanned by CamScanner



\

‘ Update PC
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Segmen; 3. Kateh operand
from memory
Segment 4
ament 4 Execute instruction

Empty pipe

...~

Semmery 1 I

{rom memory |
\l:mﬁ

Sewmen 2, | Pecode instruetion

ehective address

104 Instruction Pipeline 339

Sl instruction

and caloylate

-

Branch?

FIGURE 10.11 Four-segment CPU pipeline.

Step: 1 2 3 4 5 { 7 8 l 9 l 10 ‘H l 12 113

Instruction: 1| FL } DA | FO | EX \ \ ‘ \
2 Fl | DA | FO | EX \ ‘ \ ‘
(Branch) 3 FI | DA | FO | EX \ l \ ‘

4 Fl - - \ F1 \D:\\ FO\ F‘\‘

5 e —\—\FI\DA\FO\EX
: IEIEN
|

0| EX

~d

|

|
HEE

A | FO

FIGURE 10.12 Timing of instruction pipeline.
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Pipeline Hazards

nlisa branch instruction 4.
DA in step 4, the transf, . 18 S0gy,,
;i SIEr frgm F a5y

alted until the branch instruction jg - oy,
i . rl]_

a new instruction is fetched in step, 5 i ing
ruction fetched pn,wgu.sly in m!’ 4 can b, i

Len, the 1S q new branch instruction is encoy 5p

i

es until a € ey Nergg
delay may occur in the pipeline if the EX S€Lmepy, nl

21 ay A ; . . PR Ced.
of the operation in the data memory while t}q FO eds y,

In that case, segment FO must wajq until ‘:’émgm
. Egml;'r.

ctions is D

hen contnu

esult
an operan :
its opcrazlon.

store the T
needs to fetch

EX has finished

pipeline Hazards

o hazard (or conflict
during its designafc

- ) is a situation that prevents an ins'fruminnf

A Pipclhn d clock cycles. In general, there are e mn?

executing .

catecories of hazards.

ral hazard: Structural hazards are caused by -
5

ctions executing in :h‘e plt]f)f:].lﬂﬂ in accessing cery,
resources. For example, suppose a pipelined processor uses , Sif.
ole memory in which both instructions and daa are stored. When g
instruction is fetched from the memory, some preceding insiryg,
may be reading or writinge some datla onto the memory in the same
pipeline cycle. As two different operations cannot bc‘carricd out on the
memory in the same cycle, there is a resource conflict. Such resoure
conflicts can be resolved by providing separate instruction and dat
memory in the computer,

Recollect from our previous discussion that a Von Neumam
computer has a single memory in which both instruction and data
are stored. A pipelined von Neumann computer would suffer from
structural hazard because it has only a single memory. The Harvard
architecture on the other hand, provides separate data and instruction

|. Structu
among the mnstru

memory. This distinction between the von Neumann and Harvard
architectures is shown in Fig. 10.13. Observe from the figure that in
the Harvard architecture separate connections to the data memon
and the instruction memory are provided. Consequently, both thes
memories can be accessed in the same pipeline cycle and therefore,

Processor Processor

Data memory m

Voo
P Harvard

EJT:JRE 10.13 A schematic representation of the
Yéumann and Harvard architectures.
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6.4 inatructon Eneiine 3471

aructural hazard can not arise iy, , i
e = ’

3
. tt TV ¢ i
ofly, almOst every present-cg CeRtrw |
‘imnl!.\- : ; Y Processor is heing designed hased
parvard architecture, S M

arvard architecture Conue-

i the
o hazard: A data hazard or

Ma conflict aric
N i ONIlCt arjses
: nds on the result produc ‘

jon depe ed, may hye
E d the result has not yet been produced

s some ways of addressing (Jay

when an instruc-
4 previous imatruction
Y the time it is needed, We
. & hazards |ater
; Unless the data hazards are nntishu:mrily resolved b

Jesignet, instructions may use innpprnpri::lc d
fore, might compute wrong results,

s in this chapter.

y the procesaor
ata values and

hevs.
Lt

L

Control hnmrﬂ: An instruction pipeline ap
fetching instructions from succeeding
next mstruction 1s fetched by incremer
by the instruction size. However, whe
s encountered, fetching should stary from the target address of the
branch which may not be the succeeding E\(i(ll’(:.“l.’i) M
time a branch nstruction is decoded and the target '
the sequentially succeeding instructions Wuul{l

fetched and processing would be undergoing. This
control (also called as branch) hazard.

crates by repeatedly
addresses. That is cach time :E‘.:‘.
ing the PC. (Program Counter)
n a branch or jump instruction

However, by the
address computed.
already have been
situation is called a

| Dpata Dependency

\ difficulty that may caused a degradation of performance in an instruction
sipeline is due to possible collision of data or address. A collision occurs
when an instruction cannot proceed because previous instructions did not
complete certain operations. A data dependency occurs when an instruction
needs data that are not yet available. For example, an instruction in the FO
segment may need to fetch an operand that is being generated at the same time
by the previous instruction in segment EX. Therefore, the second instruction
must wait for data to become available by the first instruction. Similarly, an
address dependency may occur when an operand address cannot be caleu-
lated because the information needed by the addressing mode is not avail-
able. For example, an instruction with register indirect mode cannot proceed
to fetch the operand if the previous instruction is loading the address im‘n the
register. Therefore, the operand aceess to memory must be delayed until the
required address is available. Pipelined computers deal with such conflicts
between data dependencies in a variety of ways. —
The most straightforward method is to insert hardware mm!mr .s.‘
An interlock is g circuit that detects instructions whose source ﬂPCff‘"‘,"‘;’ m
destinations of instructions farther up in the pipeline. Detection of fhf?::‘.
“iion causes the instruction whose source is not available to be -ddl?%( n?.
“tough clock eyeles to resolve the conflict. This approach maintains the p
12 sequence by using hardware to insert the required dcinY“-.‘} l
- r}flotller tt:c?lmiquc alled u;.u'rf'md ‘)‘iu'm{nﬁng jlsgﬁl-“lzﬁ‘rf{"‘:lgh special
etect a conflict and then avoid it by routing the data

hardware interlocks

hardware
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Pipeline and Vector processing i |
eline scgmcnts: For example, insteaq o

gestination IEH. 7 l.hc hardware checkg fansfern'
needed as a source in the next instmctiolh. mj’s Y 1
ALU input, bypassing the registe, ﬁl?” ] pa;g;{" |
aths through multiplexers 5 “'CLI.] Thic 4
a8

342

paths between PP
ALU resull inlﬁur a
and if 1t 18
ctly into the
al hardware p

n]'.rcr:lmi.
result directly
opuieatl iltIlm nflict

“tects the ¢ :
e ([:{L;:*T)::::Iurc ump[o},.rcd in some c:omputcrs is ln.) give i
olving data conflicts p[‘O]Jl.El'I'Ib to the compiler that *Pong;y .

 mming language into a machine language r Slae, b
compiler for such computers is designed to dctgcl a data CG:m];[ ¥ i Tl
(he instructions as necessary to delay II:IL‘ loading of the Cnnmt‘lin Rorg,,
inserting no-operation instructions. This m‘-‘lhlﬂd 1S referreq to Tl‘g by
Joad. An example of delayed load is presented in the next SL‘CIiona |

!

ity for s
high-level progr:

delayved load

Handling of Branch Instructions

One of the major problems in operating an instruction Pipeline js the

rence of branch instructions. A branch instruction can pe C“[‘ldill't 00y,
unconditional. An unconditional hrancl:. always alters the Sequentig) onal oy
flow by loading the program counter with the target address, i L:ﬂf?‘srm
branch, the control selects the target instruction if the condition is wi:lf]onzl
the next sequential instruction if the condition is not satisfied. :\s;;lc;l ‘cdof
previously, the branch instruction breaks the normal sequence of (he in“-um
tion stream, causing difliculties in the operation of the Instruction " 12;an
Pipelined computers employ various hardware techniques 1o 111'1[11[:1:3::]:1#:
performance degradation caused by instruction branchine. o
. One way of handling a conditional branch is to prefe tch the target instrye-
tion mn addition to the instruction following the branch. Both are s;n-:wj uﬂ;u the
branch is exccuted. If the branch condition is successtul, the pipeline ummng
Xtension of this procedure is to contine

prefeteh target
instruction

from the branch target instruction. An ¢
'}‘lfh”lﬁ Instructions from both places until the branch decision is made. At thy
branch target buffer e control chooses the instruction stream of the correct program flow.
B S , "\"m_h'“‘r possibility is the use of a branch tareet buffer or BTB, The BT
]S{ A58 Pt a PR P I . ‘. “_ il
. ’ll;-iShl;;hlll\L memory (see See. 13.4) included in the fetch segment of te
Jpeime. tach e in the . . : : ;
lIan !n%. JLhLInlrym the BTB consists of the address of previously execui
n T:Lfl nstruction and the target instruction for that branch. It also stores
€xX cwW 't q » . . y e
decod II;]StrUl}muh after the branch target instruction. When the pipeli®
es a bra NSt s So o = . 1 for the
dildiece tl'll * 1}1:: "‘-"‘f"lltilt’fll. it searches the associative memory BB [.ur LI
and x:.;ft IlL nstruction. If it s in the BTB, the instruction is available 4t
-‘.L.. ' 2 v o ) . i T’
the P[;PL liﬂL | ?t-jil{““ueh from the new path. If the instruction is not in the 1'“:1
-lne shifts g " o instriclio
W 0 a new Instruction stream and stores the target ST 4
B. The advantage of this « ) et that DIV
oceurred prec: L us scheme is that branch instructiorn )
S Previously are readily avai - oo interrupte®
A variation of iy available in the pipeline without v high
0 i b . . oy Ve .
Speed register fie the BTB is the loop buffer. This 1s a h””lll :I[, Jine
: d ne . o " " ) [ i
"tamed by the instruction fetch segment ot lxp putle!
1%

When
a progra - ok
o s H; l(;GP 15 dClﬂ'L‘tcd in the program it is stored 1n the It ; -.;u!i‘!
v . o . v XL
"eluding all branches, The program loop ¢an be ¢ |
|

loop buffer
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10.5 RISC Pipeline 343

directly “""}“"‘”_t““'i“il to access memory until the loop mode is removed by
e final branching out.
Another procedure that some computers use is branch prediction. branch prediction
\ Iu’pcilm‘ with l"'_i“‘fh prediction uses some additional logic to guess the
sutcome of a conditional branch instruction before it is executed. The pipe-
ine then begins prefetching the instruction stream from the predicted path,
\ correct prediction eliminates the wasted time caused by branch penalties.
\ proc edure emploved in most RISC processors is the delaved branch. delayed branch
y this procedure, the compiler detects the branch instructions and rearranges

Ir
the M
keep the pipeline operating without interruptions. An example of delayed
a no-operation mstruction after a branch instruction.

achine language code sequence by inserting useful structions that

hranch 1s the nsertion of
quses the computer to fetch the target istruction during the execution

This ¢
of the no-operation instruction, allowing a continuous flow of the pipeline.

\in example of delayed branchs presented in the next section.
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