See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/316560026

COMPILER DESIGN CONCEPTS, WORKED OUT EXAMPLES AND MCQS FOR

NET/SET

Book - March 2017

CITATIONS
0

2 authors:
Annal Ezhil Selvi S
? Bishop Heber College
12 PUBLICATIONS 5 CITATIONS

SEE PROFILE

READS
3,462

J . Persis Jessintha
Bishop Heber College

6 PUBLICATIONS 0 CITATIONS

SEE PROFILE

ResearchGate

Some of the authors of this publication are also working on these related projects:

et An Efficient Cloud Storage View project

All content following this page was uploaded by Annal Ezhil Selvi S on 16 February 2018.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/316560026_COMPILER_DESIGN_CONCEPTS_WORKED_OUT_EXAMPLES_AND_MCQS_FOR_NETSET?enrichId=rgreq-118ba17a9c91dd93933a56d2e9ac0aff-XXX&enrichSource=Y292ZXJQYWdlOzMxNjU2MDAyNjtBUzo1OTQ2NjY2Njc5MjE0MDhAMTUxODc5MDk5MDE1OA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/316560026_COMPILER_DESIGN_CONCEPTS_WORKED_OUT_EXAMPLES_AND_MCQS_FOR_NETSET?enrichId=rgreq-118ba17a9c91dd93933a56d2e9ac0aff-XXX&enrichSource=Y292ZXJQYWdlOzMxNjU2MDAyNjtBUzo1OTQ2NjY2Njc5MjE0MDhAMTUxODc5MDk5MDE1OA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/An-Efficient-Cloud-Storage?enrichId=rgreq-118ba17a9c91dd93933a56d2e9ac0aff-XXX&enrichSource=Y292ZXJQYWdlOzMxNjU2MDAyNjtBUzo1OTQ2NjY2Njc5MjE0MDhAMTUxODc5MDk5MDE1OA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-118ba17a9c91dd93933a56d2e9ac0aff-XXX&enrichSource=Y292ZXJQYWdlOzMxNjU2MDAyNjtBUzo1OTQ2NjY2Njc5MjE0MDhAMTUxODc5MDk5MDE1OA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Annal_Ezhil_Selvi_S?enrichId=rgreq-118ba17a9c91dd93933a56d2e9ac0aff-XXX&enrichSource=Y292ZXJQYWdlOzMxNjU2MDAyNjtBUzo1OTQ2NjY2Njc5MjE0MDhAMTUxODc5MDk5MDE1OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Annal_Ezhil_Selvi_S?enrichId=rgreq-118ba17a9c91dd93933a56d2e9ac0aff-XXX&enrichSource=Y292ZXJQYWdlOzMxNjU2MDAyNjtBUzo1OTQ2NjY2Njc5MjE0MDhAMTUxODc5MDk5MDE1OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Bishop_Heber_College?enrichId=rgreq-118ba17a9c91dd93933a56d2e9ac0aff-XXX&enrichSource=Y292ZXJQYWdlOzMxNjU2MDAyNjtBUzo1OTQ2NjY2Njc5MjE0MDhAMTUxODc5MDk5MDE1OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Annal_Ezhil_Selvi_S?enrichId=rgreq-118ba17a9c91dd93933a56d2e9ac0aff-XXX&enrichSource=Y292ZXJQYWdlOzMxNjU2MDAyNjtBUzo1OTQ2NjY2Njc5MjE0MDhAMTUxODc5MDk5MDE1OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/J_Persis_Jessintha?enrichId=rgreq-118ba17a9c91dd93933a56d2e9ac0aff-XXX&enrichSource=Y292ZXJQYWdlOzMxNjU2MDAyNjtBUzo1OTQ2NjY2Njc5MjE0MDhAMTUxODc5MDk5MDE1OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/J_Persis_Jessintha?enrichId=rgreq-118ba17a9c91dd93933a56d2e9ac0aff-XXX&enrichSource=Y292ZXJQYWdlOzMxNjU2MDAyNjtBUzo1OTQ2NjY2Njc5MjE0MDhAMTUxODc5MDk5MDE1OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Bishop_Heber_College?enrichId=rgreq-118ba17a9c91dd93933a56d2e9ac0aff-XXX&enrichSource=Y292ZXJQYWdlOzMxNjU2MDAyNjtBUzo1OTQ2NjY2Njc5MjE0MDhAMTUxODc5MDk5MDE1OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/J_Persis_Jessintha?enrichId=rgreq-118ba17a9c91dd93933a56d2e9ac0aff-XXX&enrichSource=Y292ZXJQYWdlOzMxNjU2MDAyNjtBUzo1OTQ2NjY2Njc5MjE0MDhAMTUxODc5MDk5MDE1OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Annal_Ezhil_Selvi_S?enrichId=rgreq-118ba17a9c91dd93933a56d2e9ac0aff-XXX&enrichSource=Y292ZXJQYWdlOzMxNjU2MDAyNjtBUzo1OTQ2NjY2Njc5MjE0MDhAMTUxODc5MDk5MDE1OA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

INTRODUCTION TO COMPILER

Computers are a balanced mix of software and hardware. Hardware is just a piece of
mechanical device and its functions are being controlled by a compatible software.
Hardware understands instructions in the form of electronic charge, which is the
counterpart of binary language in software programming. Binary language has only two
alphabets, 0 and 1. To instruct the machine, the hardware codes must be written in
binary format, which is simply a series of 1s and Os. It would be a difficult and
cumbersome task for computer programmers to write such codes that is why we have
compilers to write such codes.

1.1 Language Processing System

We have learnt that any computer system is made of hardware and software. The
hardware understands a language, which humans cannot understand. So we write
programs in high-level language, which is easier for us to understand and remember.
These programs are then fed into a series of tools and OS components to get the desired
code that can be used by the machine. This is known as Language Processing System.

1
Source Code :—-I Pre Processor |
1]
Pre-processed Code ¢—-'-1""'/

-
-
-
~

Target Assembly Code 4—-::'/

I Assembler |
Re-locatable Machine Code ¢--—-‘.’__/
N
Linker Library Files /Re-locatable Modules

—————

| Loader |

I Memory |

Figure 1.1 Language Processing System

The high-level language is converted into binary language in various phases. A
compiler is a program that converts high-level language to assembly language. Similarly,
an assembler is a program that converts the assembly language to machine-level
language.

Let us first understand how a program, using C compiler, is executed on a host machine.

e User writes a program in C language (high-level language).

e The C compiler compiles the program and translates it to assembly program (low-level
language).

e An assembler then translates the assembly program into machine code (object code).

e A linker tool is used to link all the parts of the program together for execution

(executable machine code).

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET
e A loader loads all of them into memory and then the program is executed.

Before diving straight into the concepts of compilers, we should understand a few
other tools that work closely with compilers.

1.1.1. Preprocessor

A preprocessor, generally considered as a part of compiler, is a tool that produces
input for compilers. It deals with macro-processing, augmentation, file inclusion, language
extension, etc.
1.1.2. Interpreter

An interpreter, like a compiler, translates high-level language into low-level machine
language. The difference lies in the way they read the source code or input. A compiler
reads the whole source code at once, creates tokens, checks semantics, generates
intermediate code, executes the whole program and may involve many passes. In contrast,
an interpreter reads a statement from the input, converts it to an intermediate code,
executes it, then takes the next statement in sequence. If an error occurs, an interpreter
stops execution and reports it; whereas a compiler reads the whole program even if it
encounters several errors.
1.1.3. Assembler

An assembler translates assembly language programs into machine code. The output
of an assembler is called an object file, which contains a combination of machine
instructions as well as the data required to place these instructions in memory.
1.1.4 Linker

Linker is a computer program that links and merges various object files together in
order to make an executable file. All these files might have been compiled by separate
assemblers. The major task of a linker is to search and locate referenced module/routines
in a program and to determine the memory location where these codes will be loaded,
making the program instruction to have absolute references.
1.1.5 Loader: Loader is a part of operating system and is responsible for loading
executable files into memory and execute them. It calculates the size of a program
(instructions and data) and creates memory space for it. It initializes various registers to
initiate execution.

1.2. Cross-Compiler
A compiler that runs on platform and is capable of generating executable code for
platform is called a cross-compiler.

1.3. Source-to-source Compiler

A compiler that takes the source code of one programming language and translates it
into the source code of another programming language is called a source-to-source
compiler.
1.3.1. Compiler — writing — tools

Number of tools has been developed in helping to construct compilers. Tools range
from scanner and parser generators to complex systems, called compiler-compilers,
compiler-generators or translator-writing systems.
The input specification for these systems may contain:
1. A description of the lexical and syntactic structure of the source languages.
2. A description of what output is to be generated for each source language construct.
3. A description of the target machine.

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

The principle aids provided by the compiler-compilers are:

1. For Scanner Generator the Regular Expression is being used.
2. For Parser Generator the Context Free Grammars are used.
1.4 Bootstrapping

A compiler is characterized by three languages:

1. source language

2. object language

3. The language in which it is written.

1.4.1 How the First Compiler compiled?

1. We have new language L, needed for several machines A, B.
First small compiler is written for machine A, C3A. That small compiler, C3* translates
a subset of language L into machine or assembler code for A.

2. Write compiler Ci%in the simple language S. When this program run
throughC3Abecomes CkA.

ie. Complete language L on machine A a produce object code for A.
Similarlyfor B
ie. Ci*into C® using C!B to produce CLP
For machine A a small compiler C3A that translates a subset S of language L into the
machine or assemble code of A.
For Machine B:

(o x> o
Cross Compiler
CLI:'A CkB Cé‘B

1.5Compiler Architecture
A compiler can broadly be divided into two phases based on the way they compile.

1.5.1 Analysis Phase

Analysis phase is known as the front-end of the compiler, this phase of the compiler
reads the source program, divides it into core parts, and then checks for lexical, grammar,
and syntax errors. The analysis phase generates an intermediate representation of the
source program and symbol table, which should be fed to the Synthesis phase as input.

Front-end Back-end
Analysis _\ /‘_‘ Synthesis _\
Intermediate
Source Code Machine
Code Representation Code

Figure 1.2 Working Principle of Compiler

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

1.5.2 Synthesis Phase
Synthesis phase is known as the back-end of the compiler, this phase generates the

target program with the help of intermediate source code representation and symbol table.

A compiler can have many phases and passes.

e Pass: A pass refers to the traversal of a compiler through the entire program.

e Phase: A phase of a compiler is a distinguishable stage, which takes input from the
previous stage, processes and yields output that can be used as input for the next
stage. A pass can have more than one phase.

Phases v/s Passes:

e Phases of a compiler are sub tasks that must be performed to complete the
compilation process. Passes refers to the number of times the compiler has to traverse

through the entire program.

1.6 Phases of Compiler
The compilation process is a sequence of various phases. Each phase takes input from

its previous stage, has its own representation of source program, and feeds its output to
the next phase of the compiler. Let us understand the phases of a compiler.

Source Code

!

Lexical Analyzer

!

Syntax Analyzer

!

Semantic Analyzer

!

Symbol Intermediate Code Error

Table Generator Handler

Machine Independent .
Code Optimiser

Code Generator

!

Machine Dependent -
Code Optimiser

Target Code

Figure 1.3 Architecture of the Compiler

1.6.1 Lexical Analysis
The first phase of compiler is also known as Scanner. The scanner works as a text

scanner. This phase scans the source code as a stream of characters and converts it into
meaningful lexemes. Lexical analyzer represents these lexemes in the form of tokens as:
<Token-name, attribute-value>

1.6.2 Syntax Analysis
The next phase is called the Syntax Analysis or Parser. It takes the token produced by

lexical analysis, as input and generates a parse tree (or syntax tree). In this phase, token
arrangements are checked against the source code grammar, i.e., the parser checks if the
expression made by the tokens is syntactically correct or not.

1.6.3 Semantic Analysis
Semantic analysis checks whether the parse tree constructed thus follows the rules of

language. For example, it checks type casting, type conversions issues and so on. Also,

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

the semantic analyzer keeps track of identifiers, their types and expressions; whether
identifiers are declared before use or not, etc. The semantic analyzer produces an
annotated syntax tree as an output.
1.6.4 Intermediate Code Generation

After semantic analysis, the compiler generates an intermediate code of the source
code for the target machine. It represents a program for some abstract machine. It is in
between the high-level language and the machine language. This intermediate code should
be generated in such a way that it makes it easier to be translated into the target machine
code. The intermediate code may be a Three Address code or Assembly code.
1.6.5 Code Optimization

The next phase does code optimization, it is an optional phase. Optimization can be
assumed as something that removes unnecessary code lines, and arranges the sequence
of statements in order to speed up the program execution without wasting resources like
CPU, memory. The output of this phase is an optimized intermediate code.
1.6.6 Code Generation

In this phase, the code generator takes the optimized representation of the
intermediate code and maps it to the target machine language. The code generator
translates the intermediate code into a sequence of re-locatable machine code. Sequence
of instructions of machine code performs the task as the intermediate code would do.
1.6.7 Symbol Table

Symbol Table is also known as Book Keeping. It is a data-structure maintained
throughout all the phases of a compiler. All the identifiers’ names along with their
information like type, size, etc., are stored here. The symbol table makes it easier for the
compiler to quickly search and retrieve the identifier’s record. The symbol table is also
used for scope management.
1.6.8 Error Hander

A parser should be able to detect and report any error in the program. It is expected
that when an error is encountered, the parser should be able to handle it and do parsing
with the rest of the inputs. Mostly it is expected from the parser to check for errors. But
errors may be encountered at various stages of the compilation process.

Summary

e A compiler is a program that converts high-level language to assembly language.

e A linker tool is used to link all the parts of the program together for execution.

e A loader loads all of them into memory and then the program is executed.

e A compiler that runs on machine and produces executable code for another machine is
called a cross-compiler.

e A Compiler divided into two parts namely Analysis and Synthesis.

e The compilation process is done in various phases.

e Two or more phases can be combined to form a pass.

e A parser should be able to detect and report any error in the program.

Questions

1. Write a short note on Compiler Writing tools.

2. Differentiate Linker and Loader

3. Explain Bootstrapping.

4. Differentiate Analysis phase and Synthesis phase.
5. Describe the phases of the Compiler.

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

LEXICAL ANALYSIS

2.1. Introduction

Lexical analysis is the first phase of a compiler. It takes the modified source code from
language preprocessors that are written in the form of sentences. The lexical analyzer
breaks these sentences into a series of tokens, by removing any whitespace or comments
in the source code. If the lexical analyzer finds a token as invalid, it generates an error.
The lexical analyzer works closely with the syntax analyzer. It reads character streams
from the source code, checks for legal tokens, and passes the data to the syntax analyzer
when it demands.

tokens

© /_\
B
T lexemes Lexical Syntax
Qe Analyzer Analyzer
EE
w

request for tokens

Figure 2.1 Working principle of Lexical Analyser
2.2 Tokens

Lexemes are said to be a sequence of characters (alphanumeric) which is also called as
tokens. There are some predefined rules for every lexeme to be identified as a valid token.
These rules are defined by grammar rules, by means of a pattern. A pattern explains what
can be a token, and these patterns are defined by means of regular expressions.

In programming language, keywords, constants, identifiers, strings, numbers,
operators, and punctuations symbols can be considered as tokens.

For example, in C language, the variable declaration line
int value = 100;

Contains the tokens:

1) int (keyword)

2) value (identifier)

3) = (operator)
4) 100 (constant)
S) ; (symbol)

2.2.1 Specifications of Tokens
Let us understand how the language theory considers the following terms:

2.2.1.1 Alphabets

Any finite set of symbols {0,1} is a set of ©binary alphabets,
{0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F} is a set of Hexadecimal alphabets, {a-z, A-Z} is a set of
English language alphabets.

2.2.1.2 Strings

Any finite sequence of alphabets is called a string. Length of the string is the total
number of alphabets in the string, e.g., the string S is “INDIA”, the length of the string, S
is 5 and is denoted by |S|= 5. A string having no alphabets, i.e. a string of zero length is
known as an empty string and is denoted by ¢ (epsilon).

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

2.2.1.3 Special Symbols
A typical high-level language contains the following symbols:-

Symbols Purpose

Addition(+), Subtraction(-), Modulo(%), Multiplication(*) and Arithmetic
Division(/) Operator
Comma(,), Semicolon(;), Dot(.), Arrow(->) Punctuation

=, +=, [= *= -= Assignment

== 1= <, <= > >= Comparison
Preprocessor
& Location Specifier
&, &&, |, ||, ! Logical
>> >>> <<, <<< Shift Operator

2.3Language

A language is considered as a finite set of strings over some finite set of alphabets.
Computer languages are considered as finite sets, and mathematically set operations can
be performed on them. Finite languages can be described by means of regular
expressions.

2.4The role of Lexical Analysis

1. It could be a separate pass, placing its output on an intermediate file from which the
parser would then take its input.

2. The lexical analyzer and parser are together in the same pass; the lexical analyzer acts
as a subroutine or co routine, which is called by the parser whenever it needs new
token.

3. Eliminates the need for the intermediate file.

4. Returns a representation for the token it has found to the parser.

Example:

a (op) b
i. Treats the op as the token.
ii. Checks whether the operator found is +, -, *, &,etc...

2.4.1 The need for lexical analysis

The purpose of splitting the analysis into lexical analysis and syntactic analysis are,
e To simplify the overall design.
e To specify the structure of tokens that is the syntactic structure of the program easily.
e To construct more efficient recognizer for tokens than for syntactic structure.
2.4.2 Input Buffering

The lexical analyzer scans the characters of the source program one at a time to
discover token.

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

Input Buffer —

Beginning of the Token Look-Ahead Pointer
(Activated when the token is (Scans until the token
being discovers) is discovered)

Figure 2.2 Input Buffering
Eg:
{
int a, b, c;
c = atb;

}

2.4.3 Preliminary Scanning

There are certain process that are best performed as characters are moved from the
source file to the buffer. For example delete comments, ignore blanks, etc... All these
processes may be carried out with an extra buffer.

2.5Regular Expressions

The lexical analyzer needs to scan and identify only a finite set of wvalid
string/token/lexeme that belong to the language in hand. It searches for the pattern
defined by the language rules. Regular expressions have the capability to express finite
languages by defining a pattern for finite strings of symbols. The grammar defined by
regular expressions is known as Regular Grammar. The language defined by regular
grammar is known as Regular Language.

Regular expression is an important notation for specifying patterns. Each pattern
matches a set of strings, so regular expressions serve as names for a set of strings.
Programming language tokens can be described by regular languages. The specification of
regular expressions is an example of a recursive definition. Regular languages are easy to
understand and have efficient implementation.

There are a number of algebraic laws that are obeyed by regular expressions, which
can be used to manipulate regular expressions into equivalent forms.

2.5.1 Operations

The various operations on languages are:

1. Union of two languages L and M is writtenas LUM ={s | sisin L or s is in M}

2. Concatenation of two languages L and M is written as LM = {st | sisin L and tis in M}

3. The Kleene Closure of a language L is written as L* = Zero or more occurrence of
language L.

2.5.2 Notations

If r and s are regular expressions denoting the languages L(r) and L(s), then

e Union : (r)]|(s) is a regular expression denoting L(r) U L(s)

e Concatenation : (r)(s) is a regular expression denoting L(r)L(s)

e Kleene closure : (r)* is a regular expression denoting (L(r))*

Note: (r) is a regular expression denoting L(r)

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

2.5.3 Precedence and Associativity

a) (Closure), concatenation (.), and | (pipe sign) are left associative
b) has the highest precedence

c) Concatenation (.) has the second highest precedence.

d) | (pipe sign) has the lowest precedence of all.

For any regular expressions R, S & T the following axioms hold:
i. R|S =S|R (| is commutative)
ii. R | (S|T)=(R|S) | T(| is associative)
iii. R(ST) = (RS)T (- is associative)
iv. RS | T)=RS | RT& (S | T)/R=SR | TR (- is distributive over |).
V. eR = Re = R (€ is the identity for concentration).

2.5.4 Representing valid tokens of a language in regular expression

If X is a regular expression, then:

1) X* means zero or more occurrence of x. i.e., it can generate { e, X, XX, XXX, XXXX, ... }

2) X* means one or more occurrence of X. i.e., it can generate { X, XX, XXX, XXXX ... } Or X.X*
3) x? Means at most one occurrence of x.

4) |a-z] is all lower-case alphabets of English language. [A-Z] is all upper-case alphabets
of English language. [0-9] is all natural digits used in mathematics.

2.5.4.1 Representing occurrence of symbols using regular expressions
a) Letter = [a-z] or [A - Z].
b) Digit=0|1]2]|3]|4|5|6]|7]|8]9o0r[0-9]sign=[+]-].

2.5.4.2 Representing language tokens using regular expressions
1) Decimal = (sign)?(digit)*
2) Identifier = (letter)(letter | digit)*

The only problem left with the lexical analyzer is how to verify the validity of a regular
expression used in specifying the patterns of keywords of a language. A well-accepted
solution is to use finite automata for verification.

2.6Finite Automata

Finite automata is a state machine that takes a string of symbols as input and
changes its state accordingly. Finite automata is a recognized for regular expressions.
When a regular expression string is fed into finite automata, it changes its state for each
literal. If the input string is successfully processed and the automata reaches its final
state, it is accepted, i.e., the string just fed was said to be a valid token of the language in
hand.

A recognizer/finite automata for a language is a program that takes as input a string x
and answers ‘Yyes’ if x is a sentence of the language L ‘no’ otherwise.

String S —| Finite Automata — Yes / No

Figure 2.3 Finite Automaton
Types:
1. Non Deterministic Finite Automata (NFA)
2. Deterministic Finite Automata (DFA)

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

The mathematical model of finite automata consists of:

1.
2.
3.
4.
5.

Finite set of states (Q)

Finite set of input symbols (X)
One Start state (qO)

Set of final states (qf)
Transition function (§)

The transition function (§) maps the finite set of state (Q) to a finite set of input symbols

(2), Q xZ 2Q

2.6.1 NFA Construction
Let L(r) be a regular language recognized by some finite automata (FA).

1)
2)

3)

4)

S)

States: States of FA are represented by circles. State names are written inside circles.
Start states: The state from where the automata starts is known as the start state.
Start state has an arrow pointed towards it.

Intermediate states: All intermediate states have at least two arrows; one pointing to
and another pointing out from them.

Final state: If the input string is successfully parsed, the automata is expected to be in
this state. Final state is represented by double circles. It may have any odd number of
arrows pointing to it and even number of arrows pointing out from it. The number of
odd arrows are one greater than even, i.e. odd = even+1.

Transition: The transition from one state to another state happens when a desired
symbol in the input is found. Upon transition, automata can either move to the next
state or stay in the same state. Movement from one state to another is shown as a
directed arrow, where the arrows point to the destination state. If automata stays on
the same state, an arrow pointing from a state to itself is drawn.

Example 1: We assume FA accepts any three digit binary value ending in digit 1.
FA ={Q(q0, qf), £(0,1), q0, of, &}

1

0
=
0

Example 2:
Regular Expression R= (a|b)*abb (FA accepts the string which is ending with abb)

10

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

The transitions of an NFA can be conveniently represented in tabular form by means of
a transition table.

State Input(a) Symbol(b)
0 {0, 1} {0}
1 - {2}
2 - {3}

Example 3: R= aa* | bb*

d
1 @
Start
’ b

2.6.2 DFA Construction
A DFA is a special case of a NFA in which,
1) No state has an ¢ based {g} transition on input ¢
2) For each state S and input symbol ‘@’, there is at most one edge labeled ‘a’ leaving S.
For an Example:
Given Regular Expression: R= (a|b)*abb
NFA for given regular expression R is,

@

2.6.2.1 Constructing DFA from NFA:

LRegular NFA ___. DFA || Reduced DFA
Expression |
Figure 2.4 Regular Expression to Reduced DFA

An Algorithm for converting a DFA from a NFA:

Input : An NFA N.
Output : A DFA D accepting the same language.
Method

11

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

Each state D is a set of state which N could be in after reading some sequence of input
symbols. Thus D is able to simulate in parallel all possible moves N can make on a given
input string.

Let us define the function - closure(s) to be the set of states of N built by applying the
following rules:

1) Sis added to e-closure(s).
2) Iftisin e-closure(s) and there is an edge labeled € from t to u, repeated until no more
states can be added to e-closure(s).

Example: 1

Regular Expression R = (a|b)*abb

Solution:
E-closure(0) ={0, 1,2, 4,7} = A
Move(A,a) = {3, 8} —>2reads ‘a’goesto 3 & 8
Move(A, b) = {5}
E-closure(Move(A,a)) ={3,6, 1,2, 4, 7, 8
Ie. {3, 8} ={1,2,3,4,6,7,8 =8B
E-closure(Move(A, b)) = {5, 6,
le. {5} ={1,2,4,5,
Move (B, a) = {3, 8}
Move (B, b) = {5, 9}
Move (C, a) = {3, 8}
Move (C, b) = {5}
E-closure (Move (B, a)) ={1,2,3,4,6,7,8 =B

N

]" b
6, 7}

{3, 8}
E-closure (Move (B, b)) ={1,2,4,5,6,7,9} =D
{5, 9}
E-closure (Move (C, a)) ={1,2,3,4,6,7,8 =B
{3, 8}
E-closure (Move (C, b)) ={1,2,4,5,6,7}=C
{5}

Move (D, a) = {3, 8}

Move (D, b) = {5, 10}

E-closure(Move(D, a)) = {1, 2, 3,4, 6,7, 8 =B
{3, 8}

12

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

E-closure(Move(D, b)) ={1,2,4,5,6,7, 10} = E
{5, 10}

Move (E, a) = {3, 8}

Move (E, b) = {5}

E-closure(Move(E, a)) = B
{3, 8

E-closure(Move(E, b)) = C
{5}

Transition table:

States Input System

= O QW >
ve]Rvs]Ros]Nus]Nus] N
eliviNeliviielk-2

DFA:

Minimizing DFA:
n={A, B, C, D, E}
Tnew = {A, B, C, D} {E}
T = Tnew
n ={A, B, C, D} {E}
Tew ={E} {A, B, C} {D} ==
n = {E} {D} {A, C} B}

Transition table:

States Input System

i wllve] g

W W W W e
> gl > e

13

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

2.7Implementation of a lexical analyzer
LEX is a tool which automatically generating lexical analyzer for a language L.

LEX Source —* LEX Compiler — Lexical Analyzer L

Input Text —'l Lexical Analyzer L |—> Sequence of Tokens

2.7.1 Implementation
e LEX can build from its input, a lexical analyzer that behaves roughly like a finite

automaton

e The idea is to construct a NFA ‘N’ for each token pattern P in the translation rules.

e Constructing an NFA from a regular expression and then link these NFA’s together
with a new start state.

14

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

2.7.2 Translation Rules
e Empty strings are omitted.
e String divided based on delimiters such as |, (and) operators.
Example:
Regular expression r = a | abb | a* b+
The above regular expression divided into 3 parts for an implementation of FA then they
are connected with a single start state.

a {} //are omitted here

abb 4
a*b+ 4
Start . a .
Start . a . b . b @
Summary

e Lexical Analyzer is also known as Scanner.

e Lexical Analyzer and parser can be in same pass.

e Lexical Analysis simplifies the overall design.

e Preliminary scanning is also done in the first phase.
e [Extra Buffering is needed for preliminary scanning.

e LEX s the tool to construct lexical analyzer.

e The output of lexical analyzer is a stream of tokens.
e Finite Automata is also called recognizer.

e Regular expressions is needed to define the tokens.

15

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

Questions
1. Explain the need and role of the lexical analyzer.
2. Describe regular expressions.
3. Construct an NFA for (i) R=(a/b)* a (a/b)
(i) R= (a/b)* (a/b)*
4. Convert it into minimized DFA
(i) aa*/ bb*
(ii) (a/b)(a/b)(a/b)
(iii) (a/b)*abb (a/b)*
(iv) 001*(1|0)*11
(v) (00)*[(11)*

16

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

SYNTAX ANALYSIS

3.1 Introduction

Syntax analysis or parsing is the second phase of a compiler. In this chapter, we shall
learn the basic concepts used in the construction of a parser.

We have seen that a lexical analyzer can identify tokens with the help of regular
expressions and pattern rules. Due to the limitations of regular expressions the lexical
analyzer cannot check the syntax of a given sentence. Regular expressions cannot check
balancing tokens, such as parenthesis. Therefore, this phase uses context-free grammar
(CFQG), which is recognized by push-down automata.

CFG, on the other hand, is a superset of Regular Grammar, as depicted below:

Context Free
Grammar

Regular
Grammar

Figure 3.1 Grammar Hierarchy
It implies that every Regular Grammar is also context-free, but there exists some
problems, which are beyond the scope of Regular Grammar. CFG is a helpful tool in
describing the syntax of programming languages.

3.2 Context-Free Grammar
In this section, we will first see the definition of context-free grammar and

terminologies used in parsing technology.

A context-free grammar has four components:

e A set of non-terminals (N). Non-terminals are syntactic variables that denote sets of
strings. The non-terminals define sets of strings that help define the language
generated by the grammar.

e A set of tokens, known as terminal symbols (T). Terminals are the basic symbols from
which strings are formed.

e A set of productions (P). The productions of a grammar specify the manner in which
the terminals and non-terminals can be combined to form strings. Each production
consists of a non-terminal called the left side of the production, an arrow, and a
sequence of tokens and/or on- terminals, called the right side of the production.

e One of the non-terminals is designated as the start symbol (S); from where the
production begins.

17

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

The strings are derived from the start symbol by repeatedly replacing a non-terminal
(initially the start symbol) by the right side of a production, for that non-terminal.
Example

We take the problem of palindrome language, which cannot be described by means of
Regular Expression. That is, L = { w | w = wR } is not a regular language. But it can be
described by means of CFG, as illustrated below:
G=(N,T,P,S)orG=(Vn, Vi, P, S)
Where,
NorvVn={Q,Z, N}
TorVe={0,1}
P={Q—->Z|Q->N|Q—-€|Z—->0Q0 | N—>1Q1}
S={Q}

This grammar describes palindrome language, such as: 1001, 11100111, 00100,
1010101, 11111, etc.

3.3 Syntax Analyzer

A syntax analyzer or parser takes the input from a lexical analyzer in the form of token
streams. The parser analyzes the source code (token stream) against the production rules
to detect any errors in the code. The output of this phase is a parse tree.

S s Token Token
o Stream Stream
& [
g4 K'
2 &= m— Lexical Syntax
/» Analyzer /o Analyzer
Regular expressions Context-free
Finite automata Grammar

Figure 3.2 Working principle Syntax Analyzer

In this way, the parser accomplishes two tasks, i.e., parsing the code and looking for
errors. Finally a parse tree is generated as the output of this phase.

Parsers are expected to parse the whole code even if some errors exist in the program.
Parsers use error recovering strategies, which we will learn later in Error Handling
Chapter.

3.4 Derivation

A derivation is basically a sequence of production rules, in order to get the input
string. During parsing, we take two decisions for some sentential form of input:
1) Deciding the non-terminal which is to be replaced.
2) Deciding the production rule, by which, the non-terminal will be replaced.
To decide which non-terminal to be replaced with production rule, we can have two
options.

3.4.1 Left-Most Derivation(LMD)

If the sentential form of an input is scanned and replaced from left to right, it is called
left-most derivation. The sentential form derived by the left-most derivation is called the
left-sentential form.

18

3.4.2 Right-Most Derivation(RMD)

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

If we scan and replace the input with production rules, from right to left, it is known
as right-most derivation. The sentential form derived from the right-most derivation is

called the right-sentential form.

Example

Production rules:
E—-E+E
E—-E*E
E—id

Input string: id + id * id

The left-most derivation is:

The right-most derivation is:

E—-E*E
E—-E+E*E
E—-id+E*E
E—>id+id*E
E — id +id * id

E—-E+E

E—-E+E*E
E—-E+E*id
E—->E+id *id
E —id +id * id

Note: In this the left-most side non-terminalNote: Here the Right-most side non-terminall
is always processed first. is always processed first.

3.5Parse Tree

A parse tree is a graphical depiction of a derivation. It is convenient to see how strings
are derived from the start symbol. The start symbol of the derivation becomes the root of
the parse tree.

Let us see this by an example,

The given string is,a+ b * ¢

The given Grammar is E>E*E / E+E / id.

The left-most derivation is:
E—-E*E
E—-E+E*E
E—-id+E*E
E—>id+id*E
E—>id +id *id

19

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

Steps Parse Tree
Step1:
CE
ESE*E o] e
E _ e _E
Step 2: =
Il e
B3 EHEYE I
E 4 E
Step 3:

E>Iid+E*E /1\5

Step 4:

E->id+id*E /l\

de) iz

Step 5: =
E/i\ E
E—>id+id*id E/}_\E iL

1 1

In a parse tree:

1. All leaf nodes are terminals.

2. All interior nodes are non-terminals.

3. In-order traversal gives original input string.

A parse tree depicts associativity and precedence of operators. The deepest sub-tree is
traversed first, therefore the operator in that sub-tree gets precedence over the operator
which is in the parent nodes.

Exercise 1:

Consider the grammar

S > iCtS

S > iCtSeS

S>a

S>b

20

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

The following example explains bottom up approach of the leftmost derivations for the
sentence W=ibtibtaea
S—> aAcBe; A>Ab; A= b; B>d and the input string is abbcde, we have to reduce it to

S.
Abbcde - abbcBe
- aAbcBe
- aAcBe
>S
3.6 Ambiguity

A grammar G is said to be an ambiguous if it has more than one parse tree (left or
right derivation) for at least one string.

Example
E—-E+E
E—-E-E
E —id
For the string id + id - id, the above grammar generates two parse trees:
/‘ 3 ‘i E\
(E) E

AN TN
S

id id id id
When the non-terminal on the right side of given production depends on the non-
terminal on the left side of the same production, the grammar thus formed is called
inherently Ambiguous. From the above example, the language generated by an
ambiguous grammar is said to be inherently ambiguous. Ambiguity in grammar is not
good for a compiler construction. No method can detect and remove ambiguity

automatically, but it can be removed by either re-writing the whole grammar without
ambiguity, or by setting and following associativity and precedence constraints.

3.6.1 Associativity

If an operand has operators on both sides, the side on which the operator takes this
operand is decided by the associativity of those operators. If the operation is left-
associative, then the operand will be taken by the left operator; or if the operation is right-
associative, the right operator will take the operand.

Example

Operations such as Addition, Multiplication, Subtraction, and Division are left
associative. If the expression contains:

id op id op id

it will be evaluated as:

(id op id) op id

For example, (id + id) + id

21

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

Operations like Exponentiation are right associative, i.e., the order of evaluation in the
same expression will be:

id op (id op id)

For example, id » (id ~ id)

3.6.2 Precedence

If two different operators share a common operand, the precedence of operators
decides which will take the operand. That is, 2+3*4 can have two different parse trees, one
corresponding to (2+3)*4 and another corresponding to 2+(3*4). By setting precedence
among operators, this problem can be easily removed. As in the previous example,
mathematically * (multiplication) has precedence over + (addition), so the expression
2+3*4 will always be interpreted as:

2+ (3*4)

These methods decrease the chances of ambiguity in a language or its grammar.

3.6.3 Using Ambiguous Grammars

Let the natural ambiguous grammar for arithmetic expressions with operator + and *
be,

E>E+E\E*E\(E)\id

Assuming that the precedence and associativity of the operators + and * has been
specified elsewhere

There are 2 reasons for using this grammar instead of using

E>E+T,E>T, T>T*F,T>F,F>(E),F>id

1) We can easily change the associative and precedence levels of the operator + and *

without disturbing the production in 1 or the number of states in the resulting parse.
2) The parser for the unambiguous grammar will spend a substantial of its time reducing

by the single productions E->T and T->F ,where role function if to enforce associativity

and precedence information .the parser for 1 will not waste time reducing by single

productions

3.7 Left Recursion

A grammar becomes left-recursive if it has any non-terminal ‘A’ whose derivation
contains ‘A’ itself as the left-most symbol. Left-recursive grammar is considered to be a
problematic situation for top-down parsers. Top-down parsers start parsing from the Start
symbol, which in itself is non-terminal. So, when the parser encounters the same non-
terminal in its derivation, it becomes hard for it to judge when to stop parsing the left non-
terminal and it goes into an infinite loop.

Example:

(1) A=>Aa | B
(2) S=>Aa | P
A =>Sd

(1) is an example of immediate left recursion, where A is any non-terminal symbol and a
represents a string of non-terminals.
(2) is an example of indirect-left recursion.

22

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

A—AX
Ao
/' \,,»
A/ S o
A—AX) .
Ac)
A Lt
A—Ax ¥ «
Ao,
A o

A top-down parser will first parse A, which in-turn will yield a string consisting of A
itself and the parser may go into a loop forever.

3.7.1 Removal of Left Recursion

One way to remove left recursion is to use the following technique:

The production

A=>Aa | B

is converted into following productions A=> BA'

This does not impact the strings derived from the grammar, but it removes immediate
left recursion.

Second method is to use the following algorithm, which should eliminate all direct and
indirect left recursions.

Example
The production set
S=>Aa |
A =>8d
after applying the above algorithm, should become
S=>Aa | B
A =>Aad | pd
and then, remove immediate left recursion using the first technique.
A => BdA'
A'=>adA' | ¢
Now none of the production has either direct or indirect left recursion.
Example
Production Rule No With Left Recursion Without Left Recursion
If the production is A> Aa | B A->BA'
A'=>dA' | e
1 E>E+T | T E-> TE’
E> +TE’ | ¢
2 T>T*F | F T>FT
T> *FT" | ¢
3 F>(E) | id No need for Left Recursion.

23

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

3.7.2 Left Factoring

If more than one grammar production rules has a common prefix string, then the top-
down parser cannot make a choice as to which of the production it should take to parse
the string in hand.

Example
If a top-down parser encounters a production like
A=aB | a | ...

Determine which production to follow to parse the string, as both productions are
starting from the same terminal (or non-terminal). To remove this confusion, we use a
technique called left factoring.

Left factoring transforms the grammar to make it useful for top-down parsers. In this
technique, we make one production for each common prefixes and the rest of the
derivation is added by new productions.

Example
The above productions can be written as
A =>aA’
A=>p | | ...
Now the parser has only one production per prefix which makes it easier to take
decisions.

3.8Limitations of Syntax Analyzers

Syntax analyzers receive their inputs, in the form of tokens, from lexical analyzers.
Lexical analyzers are responsible for the validity of a token supplied by the syntax
analyzer. Syntax analyzers have the following drawbacks:
e it cannot determine if a token is valid,
e it cannot determine if a token is declared before it is being used,
e it cannot determine if a token is initialized before it is being used,
e It cannot determine if an operation performed on a token type is valid or not.

These tasks are accomplished by the semantic analyzer, which we shall study in
Semantic Analysis.

3.9 Types of Parsing

Syntax analyzers follow production rules defined by means of context-free grammar.
The way the production rules are implemented (derivation) divides parsing into two types:
top-down parsing and bottom-up parsing.

Parsing

l

Top-Down Bottom-Up
Figure 3.3 Types of Parsing

24

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

Top-down Parsing
When the parser starts constructing the parse tree from the start symbol and then

tries to transform the start symbol to the input, it is called top-down parsing.

[0 Recursive descent parsing: It is a common form of top-down parsing. It is called
recursive, as it uses recursive procedures to process the input. Recursive descent
parsing suffers from backtracking.

[0 Backtracking: It means, if one derivation of a production fails, the syntax analyzer
restarts the process using different rules of same production. This technique may
process the input string more than once to determine the right production.

Bottom-up Parsing
As the name suggests, bottom-up parsing starts with the input symbols and tries to

construct the parse tree up to the start symbol.

Note:

In both the cases the input to the parser is being scanned from left to right, one
symbol at a time.

The bottom-up parsing method is called “Shift Reduce” parsing. The top-down parsing
is called “Recursive Decent” parsing.

An operator-precedence parser is one kind of shift reduce parser and predictive parser
is one kind of recursive descent parser.

Example:
Input string:a+b *c¢
Production rules:
S—E
E—-E+T
E— E*T
E—-T
T —id
Let us start bottom-up parsing.
at+tb*c
Read the input and check if any production matches with the input:
a+b*c
T+b*c
E+b*c
E+T*c
E*c
E*T
E
S
3.9.1 TOP-DOWN PARSING
We have learnt in the last chapter that the top-down parsing technique parses the
input, and starts constructing a parse tree from the root node gradually moving down to
the leaf nodes. The types of top-down parsing are depicted below:

25

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

Top-Down

|

Recursive Descent
/".’ \.

? & ~
” .

‘/’/ \

Back-tracking Non Back-tracking

Predictive Parser

Figure 3.4 Top down Parser A

3.9.1.1 Recursive Descent Parsing

Recursive descent is a top-down parsing technique that constructs the parse tree from
the top and the input is read from left to right. It uses procedures for every terminal and
non-terminal entity. This parsing technique recursively parses the input to make a parse
tree, which may or may not require back-tracking. But the grammar associated with it (if
not left factored) cannot avoid back-tracking. A form of recursive-descent parsing that
does not require any back-tracking is known as predictive parsing.

This parsing technique is regarded recursive, as it uses context-free grammar which is
recursive in nature.

Back-tracking

Top- down parsers start from the root node (start symbol) and match the input string
against the production rules to replace them (if matched). To understand this, take the
following example of CFG:

S — rXd | rZd
X —>o0a | ea
Z — ai

For an input string: read, a top-down parser, will behave like this:

It will start with S from the production rules and will match its yield to the left-most
letter of the input, i.e. r’. The very production of S (S — rXd) matches with it. So the top-
down parser advances to the next input letter (i.e. ‘€’). The parser tries to expand non-
terminal X’ and checks its production from the left (X — oa). It does not match with the
next input symbol. So the top-down parser backtracks to obtain the next production rule
of X, (X — ea).

Now the parser matches all the input letters in an ordered manner. The string is
accepted.

26

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

X d r]X\ d r (X d
o a e a
back-tracking next-production

Top-Bottom Parser

Remove Left Recursion
Left Factored Grammar

A 4

Recursive Descent

Remove Back-tracking
v

Predictive Parser

Use Table
Remove Recursion

v
Non-recursive Predictive Parser
In recursive descent parsing, the parser may have more than one production to choose
from for a single instance of input; whereas in predictive parser, each step has at most
one production to choose. There might be instances where there is no production
matching the input string, making the parsing procedure to fail.

Predictive Parser

Predictive parser is a recursive descent parser, which has the capability to predict
which production is to be used to replace the input string. The predictive parser does not
suffer from backtracking.

To accomplish its tasks, the predictive parser uses a look-ahead pointer, which points
to the next input symbols. To make the parser back-tracking free, the predictive parser
puts some constraints on the grammar and accepts only a class of grammar known as
LL(k) grammar.

| | fals]

Input

TE® |
X L Parser ————— Output

$ |
Stack I

| Parsing Table
Figure 3.5 Principle of Predictive Parser

27

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

Predictive parsing uses a stack and a parsing table to parse the input and generate a
parse tree. Both the stack and the input contains an end symbol $ to denote that the
stack is empty and the input is consumed. The parser refers to the parsing table to take
any decision on the input and stack element combination.

Steps to be involved in Parsing Method:
v" Stack is pushed with $.
v" Construction of parsing table T.
» Computation of FIRST set.
» Computation of FOLLOW set.
= Making entries into the parsing table.
v' Parsing by parsing routine.

Construction of parsing table
First and Follow Sets

An important part of parser table construction is to create first and follow sets. These
sets can provide the actual position of any terminal in the derivation. This is done to
create the parsing table where the decision of replacing T[A, t] = a with some production
rule.

First Set

This set is created to know what terminal symbol is derived in the first position by a
non-terminal.

To compute FIRST(X) for all grammar symbols X, apply the following rules until no
more terminals or € can be added to any FIRST set.

For example,

A—tp

That is, A derives t (terminal) in the very first position. So, t € FIRST(A).

Algorithm for Calculating First Set

Look at the definition of FIRST (X) set:

1) If Xis terminal, then FIRST{X}

2) If X is non terminal and X-2>aa is a production then add a to FIRST(X).if x>¢ is a
production, then add e to FIRST(X)

3) If X>Y:,Y2...Yx is a production, then ---- I ------- all of Y;,Y>...Yi1 are non terminals
X FIRST(Yj) contains € for j=1,2...j.1 (i.e. Y1 ,Y2...Yi.1 "=>¢ add every non & symbol in
first (Yj) for all j=1,2...k then add ¢ to FIRST (X)

[Example: (Left Recursion Eliminated Grammar)

[E > TE’
[E’> +TE’/e
T >FT
I° >*FT/e
IF 2> (E)/id
E > TE’ FIRST (E) = FIRST (T) ~FIRST (F) = {(, id}
" J—
\ By Rule 3
F>(E)andF 2 id
E’-> +TE’/e IFIRST (E’) = {t, &} By Rule 2
T° >*FT /e IFIRST (T”) = {*, &} By Rule 2
FIRST(+) ={ + } By Rule 1
FIRST(*) ={ *} FIRST(O ={ (}
FIRST() ={) } FIRST(id) ={ id}

28

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

Follow Set

Likewise, we calculate what terminal symbol immediately follows a non-terminal A in
production rules. We do not consider what the non-terminal can generate but instead, we
see what would be the next terminal symbol that follows the productions of a non-
terminal.

To compute follow (A) for all non-terminals A, apply the following rules until nothing
can be added to any FOLLOW set.

Algorithm for Calculating Follow Set

1. $isin follow (S), where S is the start symbol.

2. If there is production A-> aBf, B#e then everything in FIRST (B) but ¢ is in FOLLOW (B)
3. If there is a production A>aB or a production A-> aBf where FIRST () contains ¢ (i.e.
B =>¢) then everything in FOLLOW (A) is in FOLLOW (B).

Example: (Left Recursion Eliminated Grammar)

E > TE’

E’ > +TE’/¢

T >FT

T’ >*FT’/¢e

F > (E) /id

Productions Without & Productions With ¢

Rule 2 Follows Rule 3 Follows

A-> aBf, B#e A->aB

FOLLOW (B)= FIRST () | Or

Except € A-> aBB, B=¢
FOLLOW(B)=FOLLOW (A)
E > TE’
FOLLOW(E’)=FOLLOW(E)=
{),$}

E’ > +TE | E > +TE’

E#¢ E=¢

FOLLOW(T)=FIRST(E’)={ FOLLOW(T)=FOLLOW(E’) =

+ {0, +$}
T >FT
FOLLOW(T’)=FOLLOW(T)=
{),+$}

N >*FT | T 2>*FT

T#e T=¢

FOLLOW(F)=FIRST(T")={ * | FOLLOW(F)=FOLLOW(T")=

) 04" 8

F > (E)

FOLLOW(E)=FIRST())={),

$}

E is the Start symbol so

$ included in FIRST set

according to the rule 1.

Result:

FOLLOW (E) =FOLLOW (E) = {), $}
FOLLOW (T) =FOLLOW (T") = {), +, $}
FOLLOW (F) ={), *, +, $}

29

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

Then

FIRST (E) = FIRST (T) =FIRST (F) = {(, id}
FIRST (E) = {+, ¢}
FIRST (T) = {*, ¢}
FOLLOW (E) =FOLLOW (E’) = {), $}
FOLLOW (T) =FOLLOW (T") = {), +, $}
FOLLOW (F) ={), *, +, $}

Parsing table for Grammar:

Rules for making entries in to the table:

1. If there is a ¢ transition means, make entries on FIRST (a) and FOLLOW(a) by
Production rule.
a. On FIRST (a) with corresponding production rule.
b. On FOLLOW (a) with & production rule.

2. If there is no & transition means, make entries on FIRST (a) set only by production

rule.
Id + * () 3
E E->TE’ E>TE’
E’ E>+TE E>¢ |[E>¢
T T2>FT’ T>FT’
T T ¢ T'>*FT’ T>e |T>¢
F | F>id F>(E)

3.9.2 Bottom-Up Parsing

Bottom-up parsing starts from the leaf nodes of a tree and works in upward direction
till it reaches the root node. Here, we start from a sentence and then apply production
rules in reverse manner in order to reach the start symbol. The image given below depicts
the bottom-up parsers available.

Bottom-Up
Shift-Reduce
LR Parsing
SLR Parsing LR Parser LALR Parser

Figure 3.6 Shift Reduce Parsing Methods
3.9.2.1 Shift-Reduce Parsing

It is called as bottom up style of parsing. Shift-reduce parsing uses two unique steps
for bottom-up parsing. These steps are known as shift-step and reduce-step.

30

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

[J Shift step
The shift step refers to the advancement of the input pointer to the next input symbol,
which is called the shifted symbol. This symbol is pushed onto the stack. The shifted
symbol is treated as a single node of the parse tree.
[J Reduce step
When the parser finds a complete grammar rule (RHS) and replaces it to (LHS), it is
known as reduce-step. This occurs when the top of the stack contains a handle. To
reduce, a POP function is performed on the stack which pops off the handle and replaces
it with LHS non-terminal symbol.
Reducing a string W to the start symbol S of a grammar.
At each step a string matching the right side of a production is replaced by the symbol
on the left.
Example:
S—> aAcBe; A>Ab; A= b; B>d and the string is abbcde, we have to reduce it to S.
Abbcde > abbcBe
- aAbcBe
- aAcBe
>S
Each replacement of the right side of the production the left side in the process above
is called reduction .by reverse of a right most derivation is called Handle
S*>»aAw=2apw,then A>f in partition following is a handle of afw. The string w to the
right of the handle contains only terminal symbol.
A rightmost derivation in reverse often called a canonical reduction sequence, is
obtained by “Handle Pruning”.

Example:
E-> E+E
E-> E*E
E->(E)
E->id
Input: id;+id2*ids>E
Right Sentential Form | Handle | Reducing production
id;+id»*ids id; E->id
E+ida*ids ido E->id
E+E*ids ids E->id
E+E*E E*E E2>E*E
E+E E+E E2>E+E
E

Ie. This example is the reverse of the sequential in the rightmost derivations.

Stack Implementation of Shift Reduce Parsing

There are two problems that must be solved if we are to automate parsing by handle
parsing.

1) To locate a handle in a right sentential form.

2) What production to choose.

There are 4 possible actions a shift reduce parser can make

1) Shift
2) Reduce
3) Accept

31

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

4) Error

1) In shift action, the next input symbol is shifted to the top of the stack.

2) In the reduce action the parser knows

¢ Right end of the handle.

¢ To locate left end of the handle within the stack.

e Decide what non-terminal to replace the handle.

3) In an accept action, the parser announces successful completion of parsing.

4) In an error action, parser looks for syntax error and calls an error recovery routine.

Example:
E-> E+E
E-> E*E
E-(E)
E->id
Input: id;+ido*ids
Stack Input Action
$ Id1+id2*id3$ Shift
$id, +ido*ids$ Reduce by E~>id
$E +id2*id3$ Shift
$E+ idg*id3$ Shift
$E+id, *ids$ Reduce by E~>id
$E+E *ida$ Shift
SE+E* ids$ Shift
SE+E* ids | $ Reduce by E~>id
SE+E*E | $ Reduce by ESE*E
$E+E $ Reduce by ESE+E
SE $ Accept

3.9.2.1.2 Operator Precedence Parsing (one kind of Shift Reduce Parsing)
Definition:

A grammar is said to be operator grammar if it has no 2 adjacent non terminals, if it
has no production right side is &
Example:

Consider the grammar

E->EAE/(E)/-E/id

A>+/-/*]..... / 1->is not an operator grammar
Because EAE->a adjacent non terminals
However it can be easily converted into operator grammar as follows.
E>E+E/E*E/E-E/EAE/(E)/-E/id

Precedence relation between pair of terminal:

Relation Meaning

A< b ‘a’ yields precedence

A=b ‘a’ has the same precedence as ‘b’
A>b ‘a’ takes precedence over ‘b’

Two ways to determine precedence relations:
1) Intuitive: based on precedence and associative rules of operators
2) Constructing unambiguous grammar.

32

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

3) Operator precedence relation from associativity and precedence.
If operator 0, has higher precedence than operator 0,, then

el. >62
02<.0;
Example:
1) * has higher precedence over +, then the relations are
* >+
+ <. *

2) If 01 ana 02 are operator of equal precedence then,
01.> 02 . & 02> 0; 2> left associative
01 < .02 . & 02, 01 2 right associative

Example:
+, - are left associative
>4, - >
+ >, - >+

1 has right associative
1<
3) Make
0<.id; id.> ®; B<.c; (<.0
). ®; 0.>); 0.>$;$<. ® 0 and

(=) $<. (;$< .id

(<. id>$;)<. $

(<.id; id.>) ;.>)

Example:

Relation Table

Id + * $

Id . > > >
+ > <. >
* > > >
$ < <

Definition:
An operator precedence is an € free operator grammar in which the precedence relations
<.,= &.> constructed are disjoint

Note:
LEADING(A)={a/A=*> yad, where y is € or a single non terminal}
TRAILING(A)={a/A=*> yad, where & is € or a single non terminal}

Precedence Function
Precedence table can be encoded by a precedence functions f & g.
We select f & g for symbol a & b
e f(a)<g(b) whenever a<.b
o f(a)=g(b) whenever a=b
e f(a)>g(b) whenever a.>b

33

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

Example
Id + * $
Id . > >
<.
* '>
$ < <

Graph Representation:

Longest root is g, to fs is 5 (----The dotted line denotes it)
F$=0 F$=0 Fid=4 Fid=4
F+=2 F+=2
F*=4 F*=4
+ * Id $
f 4 4 0
g 1 3 5 0

3.10 LR Parser

The LR parser is a non-recursive, shift-reduce, bottom-up parser. It uses a wide class
of context-free grammar which makes it the most efficient syntax analysis technique. LR
parsers are also known as LR(k) parsers, where L stands for left-to-right scanning of the
input stream; R stands for the construction of right-most derivation in reverse, and k
denotes the number of look ahead symbols to make decisions.

An LL Parser accepts LL grammar. LL grammar is a subset of context-free grammar
but with some restrictions to get the simplified version, in order to achieve easy
implementation. LL grammar can be implemented by means of both algorithms, namely,
recursive-descent or table-driven.

LL parser is denoted as LL(k). The first L in LL(k) is parsing the input from left to right,
the second L in LL(k) stands for left-most derivation and k itself represents the number of
look aheads. Generally k = 1, so LL(k) may also be written as LL(1).

LL(k)
Left to right /

Left most derivation

k lookahead symbol
Figure 3.7 LL Parser

34

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

3.10.1 LL Parsing Algorithm

We may stick to deterministic LL(1) for parser explanation, as the size of table grows
exponentially with the value of k. Secondly, if a given grammar is not LL(1), then usually,
it is not LL(k), for any given k.

There are three widely used algorithms available for constructing an LR parser:
I. SLR(1) - Simple LR Parser:

1. Works on smallest class of grammar

2. Few number of states, hence very small table

3. Simple and fast construction
II. LR(1) - LR Parser:

1. Works on complete set of LR(1) Grammar

Generates large table and large number of states
3. Slow construction
III. LALR(1) >Look-Ahead LR Parser:
i. Works on intermediate size of grammar
ii. Number of states are same as in SLR(1)

3.10.2 Simple LR Parser

Simple LR parser has 2 components:
1) Constructing of LR(0) items

2) Constructing of parsing table.

Construction of LR (0) Items

The collection of sets of LR (0) item is called SLR

The collection of sets of LR (0) items can be constructed with the help of functions
called CLOSURE and GOTO functions. This collection is called canonical collection of LR
(0) items.
Step 1: Creating augmented grammar

Consider the grammar G & S is the start symbol. The augmented grammar of G is

with a new start ‘S’ and having a production S’>S

Example:
Grammar G The augmented grammar of
G’

E>E+T E>E
E->T E>E+T

T>T*F E->T
T>F T>T*F

F >(E) T>F

F->id F >(E)

F->id

Step 2: CLOSURE ()

Let us say I is a set of items for a grammar G, then CLOSURE of I can be computed by
using the following steps.
1. Initially, every item in I is added to CLOSURE(])
2. Consider the following,

If A>X.BY an item in I, and B>Z production then add this production in I in the
following form B-> .Z ,but if it is not already there.

35

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

Example:

Closure (E'2.E) = E'>.E
E->.E+T
E>.T
T->.T*F Io
T>.F
F->. (E)
F->.id

Step 3: perform GOTO (I, X) (I is CLOURE set and X is all Grammar symbol)

This is computed for a set I on a grammar symbol X. GOTO (I, X) is defined to be the

closure of the set of all items [A>aX.p] such that [A2>a.Xp]isin I.
Consider an item in I's production is maybe like this means,
A-> XBY then
GOTO (I, X) will be performed based on the following Rules:

1. If A>X.BY where B is a Terminal, including this item only in the CLOSURE (X) Item.
2. If A>X.BY where B is a Non-Terminal including this item along with B’s CLOSURE (B).
Example:
lo: E->.E
E->.E+T
E->.T
T->.T*F
T->.F
F->. (E)
F->.id
GOTO (Io, E) = EE.
E>E. +T I;
GOTO (Io, T) = E>T.
T>T.*F I
GOTO (lo, F) = T2>F. Iz
GOTO (Io,+) =GOTO(lo,*)= GOTO (lo.))= null
GOTO(lo,() = F>(.E) // 2 rule in step
E->.E+T 3 is applied here
E>.T
T->.T*F
T>.F
F->. (E) Is
F->.id
GOTO (Lo, id) =F->id Is
[,. E>E.
E2>E. +T is GOTO (I, X)
GOTO (I;, E) =GOTO (I;, T) = GOTO (I1, F) =GOTO (I;,*) = GOTO (I3,

36

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

() =GOTO (1,))=GOTO (1, id) =Null
GOTO (I, +) =E>E+.T // Rule 2 in|
T->.T*F step 3
T>.F
F->. (E) Ie
F->.id
E->T.
T>T.*F GOTO(I2,X)
GOTO(I2,E)=GOTO(I2,T)=GOTO(I2, F)=GOTO(I2,+)=GOTO (I2,() = GOTO (I2,))
=GOTO (Iz,id)=Null
GOTO(I2,*)=T>T*.F // Rule 2 in
F->.(E) step 3
F->.id 17

Is: T>F. Le. GOTO(I5,X)

GOTO(I3 E)=GOTO(I3,T)=GOTO(Is F)=GOTO I3 *)= GOTO(I3,+)=
GOTO(I5,()=GOTO(I3))=GOTO(Is,id)=null ;

,: F>(E)
E>.E+T
E>.T

T>.T*F
T>.F
F>. (E)

F->.id GOTO(I4,X) is,

GOTO(I+,E)= F>(E.)
E>E.+T

Is

GOTO(ls, T)= T>T.*F
E>T.

1o

GOTO(I+,F)= T>F.

I3

GOTO(I+,+)=Null ; GOTO(I4,*)=null ; GOTO(I+))=Null .

GOTO(I,()= F>(.E)

E>.E+T
E>.T
T>.T*F T4
T>.F
F>(.E)
F>.id
GOTO(L+id)=F~>id. Is
Is. F->id.

GOTO(I5,E)= GOTO(I5,T)=

GOTO(Is,F)= GOTO(Is,+)= GOTO(Is,*)

37

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

GOTO(Is,()=GOTO(Is,)= GOTO(I5,ID)=Null

lo: ESE+.T
T>.T*F
T>.F
F>. (B)

F->.id

GOTO (I6,E)=GOTO (Is,+)=GOTO (Is,*)= GOTO(Ie,))= Null

GOTO (Io, T)=E>E+T.
TSTAF

GOTO (Io,F)=T>F.

GOTO (Ie,()=F>(.E)
E>.E+T
ES>.T
TS>.TF
TS>.F
F>. (E)
F>.id

I4

GOTO(I6,id)=F>id

Is

[: T>T*F
F>.(E)
F>.id

GOTO(I7,E)=GOTO(I7,T)=GOTO(I7,+)= GOTO(I7,)= GOTO(I7,))=Null

GOTO(I;,E)=T>T*F.

I1o

GOTO(I7,() =F>(.E)

E->.E+T
E>.T
T>.T*F L4
T>.F
F>.(E)
F->.id
GOTO(l7,id)=F->id. Is
[s: F>(E.)
E>E.+T
GOTO(Is,E)=GOTO(l3,T)=GOTO(ls,F)=GOTO (Is,*)= GOTO(ls,()=
GOTO(ls,id)=Null
GOTO(Is,+)= E>E+.T
T->.T*F
T>.F I
F->.(E)
F->.id
GOTO (Is,)) =F>(E). Iix
lo: E>E+T.

38

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

T>T.*F

GOTO(Io,E)= GOTO(Io,T)= GOTO(Io,F)= GOTO(Is,+)= GOTO(Is, ()= GOTO Io,))=
GOTO(Lo,id)=Null

GOTO(lo,*)= T>T*.F

F->.(E) I7
F->id
Iio: T>T*F.
GOTO(110,E)=GOTO(I10,T)=GOTO(110,F)=GOTO(I10,+)= GOTO(I10,*)=
GOTO(I10,()= GOTO(I10,))= GOTO(I10,id)=Null
Iii: F Q(E)
GOTO(L11,E)=GOTO(Li1,T)=GOTO(L11,F)=GOTO(L11,%)= GOTO(L1,)=

GOTO(I11,()= GOTO(I,1,)= GOTO(I11,id)=Null

LR (0) items:

Io: E>.E
E->.E+T
E->.T
T->.T*F
T>.F
F>.(E)
F->id.

I: E->E.
ES>E. +T

IQZ E->T.
T>T.*F

132 T->F.

I;: F>(E)
E>.E+T
E>.T
T>.T*F
T>.F
F>. (B)
F>.id

151 F%ld

le: ESE+.T
T>.T*F
T>.F
F>. (E)

39

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

F->.id
I7: T>T*.F
F>. (E)
F->.id
Is: FD(E.)
T>E. +T
Is: E2>E+T.
T->T. *F
I1()I T->T*F.
I112 F Q(E)

Construction of SLR parsing Table:
This is also a 2 dimensional array in which the rows are states & columns are
terminals & non terminals. This table has 2 parts,
1) Action
2) Go to entries
The action may one of the following:

1) Shift
2) Reduce
3) Accept
4) Errors

Steps for Constructing SLR parsing table:
1. Let C={lo,l;...Is} is the collection of sets of LR (0) items.
2. Consider [j as a set in C, then

If GOTO (;, a) =Ix then set action [j,a] to shift k, ’a’ is always terminal.

If A>x. (x can be either terminal /non terminal) is in [; then set action [j,a] to reduce
ADX oo il ‘a’in FOLLOW (4) if x is a terminal. If x is a non-terminal set action [j, a] to
reduce A>X ‘a’in FOLLOW (X).

3. If ’>Sis in [then set action [j,$]=k Accept.
4. If GOTO [I;, A] =Ik, then set GOTO (j, a) =k.
S. All the under defined entries are errors.

Example:

1) E->E+T. is in Iy ,FOLLOW (T) ={+,$,)}

2) E-T.is in I, ,FOLLOW (T) ={+,$,)}

3) T>T*F.is in [0 ,FOLLOW (F) ={+*,$,)}

4) T-F.is in I3 ,FOLLOW (F) ={+,*,$,)}

5) F->(E).is in I;; ,FOLLOW ()) =FOLLOW(F)={+,*.$,)}
6) F-id.isin Is ,FOLLOW (id) =FOLLOW(F)={+,*,$,)}

ACTION entries in GO TO entries
States Terminals in Non-
Terminals

40

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

d| + | * | (]) | $[E]|T]|F
0 Ss Sy 1 2 3
1 Se A
2 I S7 I 1 9]
3 T4 T4 j j
4 Ss Sa 8 2 3
5 Te Te Te Te
6 Ss S4 9 3
7 Ss S4 10
8 Se S11
9 I Sy I I
10 I3 I3 I3 I3
11 Is | Is Is | Is

SLR parsing Algorithm
This algorithm works in conjunction with the parsing table, for parsing an input string
.The possible action are as follows:

1) Shift
2) Reduce
3) Accept
4) Errors

The input string is in I/p buffer followed by the right end marker $. The stack
keeps the states of the parsing table

The I/p string has ‘n’ symbols & are marked by a;, a2...a, and the stack has states
SO, S1, S2...5n

Steps involved in SLR parsing

1) If action [So,a1]=S;, the parser has to make a Shift of the current i/p symbol & a new
state will be 9’ on the stack.

2) If action [Sm,aj]=Reduce by A->x,then the parser has to reduce by A->x .find out the no.
of symbols available on the right hand side of A after “ -” .let us say it r ,then POP of
(2,1r) symbols from the stack.

(2.1) if GOTO [Sm-r,A]=J(states) then PUSH A onto the stack.

3) If action [Sm,aj]=Accept ,then announce that the parsing is completed successfully and
then halt.

4) If action [Sm,aj]=Error ,then the parser encounter error and calls error recovery routine

or generates error message.

Example: Input: id +id
Stack [nput Event
0 Id+id$ Initial State
0Oids +1d$ Shift
OF3 +id$ Reduce by F>id
0T, +id$ Reduce by T>F.
OE; +id$ Reduce by E>T.
OE+6 id$ Shift
OE +6 ids S shift
OE+6F; S Reduce by F>id

41

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

OE.+6 Ty S Reduce by T>F
OE, S Reduce by F>E+T
LL vs. LR

LL

LR

Does a leftmost derivation.

Does a rightmost derivation in reverse.

Starts with the root nonterminal on the
stack.

Ends with the root nonterminal on the stack.

Ends when the stack is empty.

Starts with an empty stack.

Uses the stack for designating what is still
to be expected.

Uses the stack for designating what is already
seen.

Builds the parse tree top-down.

Builds the parse tree bottom-up.

Continuously pops a nonterminal off the
stack, and pushes the corresponding right
hand side.

Tries to recognize a right hand side on the
stack, pops it, and pushes the corresponding
nonterminal.

Expands the non-terminals.

Reduces the non-terminals.

Reads the terminals when it pops one off
the stack.

Reads the terminals while it pushes them on|
the stack.

Pre-order traversal of the parse tree.

Post-order traversal of the parse tree.

Summary

Syntax analyzer is also called parser.
Context free grammar is used as recogni
Parse tree is an output of Parser

Shift reduce parsing is a kind of Bottom

Zer.

Precedence rules are used to operate the operators.
Two types of parsing, Bottom up parsing and Top Down parsing.
Recursive descent parsing is a kind of Top Down parsing.

Up parsing.

Predictive Parser is a kind of Recursive Decent parser.

Questions

1. Explain the types of Parser.

2. Construct a Parsing Table for the Grammar
E>E+T/T
T>T*F/F
F>(E)/id

42

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

3. Differentiate left recursion and left factoring.
4. Explain the stack implementation of shift reduce parsing.
S. Describe different kinds of LR parser with an example.

ERROR HANDLING

4.1 Introduction

A parser should be able to detect and report any error in the program. It is expected
that when an error is encountered, the parser should be able to handle it and carry on
parsing the rest of the input. Mostly it is expected from the parser to check for errors but
errors may be encountered at various stages of the compilation process. A program may
have the following kinds of errors at various stages:

e Lexical Error: name of some identifier typed incorrectly

e Syntactical Error : missing semicolon or unbalanced parenthesis
e Semantical Error: incompatible value assignment

e Logical Error: code not reachable, infinite loop

When an error is detected the reaction of compiler different.
(a) A system crash

(b) To emit invalid output

(c) To merely quit on the first detected error.

4.1.1 Reporting Errors

» Good error diagnostics should possess a number of properties,

» The massage should pinpoint the errors in terms of the original source program rather
than in terms of some internal representation

» The error message should be understandable by the user

» The message should be specific and should localize the properties.

» The message should not be redundant.

4.1.2 Sources of Errors

= The insertion of an extraneous character or token.

» The deletion of a required character or token.

» The replacement of correct character or token by an incorrect character or token.
» The transpiration of two adjacent characters or tokens.

Diagnostic Message Prints
A 4

Lexical Corrector | Syntactic Corrector | | Symbol-Table |
A A

A 4 A 4 \ 4

’I Lexical Analyzer '’I Parser Semantic Checker

Figure 4.1 Error Handling

43

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

4.1.2.1 Lexical Phase Errors

* Minimum Distance Matching -> Spelling

4.1.2.2 Syntactic — Phase Errors:

» Minimum distance correction of syntactic errors.

= Black (e.g. If-else) (spelling of token)

= Time of detection LL (1) and LR (1). Two or more production E-> E+E/E*E

= Panic Mode:

= Crude but effective systematic method of error recovery in any kind of parsing.

= Here parser discards input symbol until a “Synchronizing” token (;) is encountered.

Error recovery in operator — precedence parsing

Parser can discover syntactic errors:

1. If no precedence relation holds between the terminals a top of the stack and the
current input symbol.

2. If a handle has been found but there is no production with this handle as a right side.
* Handling errors during reduction (No production rule to reduce)
= Handling shift reduce errors.
= Error recovery in LR parsing (place where there is no entry)
» Mid-Hoc error recovery for LR parsers (loop)

4.1.2.3 Semantic Errors

Undeclared name and type incompatibilities.

4.2 Error Recovery

There are four common error-recovery strategies that can be implemented in the
parser to deal with errors in the code.
4.2.1 Panic Mode

When a parser encounters an error anywhere in the statement, it ignores the rest of
the statement by not processing input from erroneous input to delimiter, such as semi-
colon. This is the easiest way of error-recovery and also, it prevents the parser from
developing infinite loops.
4.2.2 Statement Mode

When a parser encounters an error, it tries to take corrective measures so that the rest
of the inputs of the statement allow the parser to parse ahead. For example, inserting a
missing semicolon, replacing comma with a semicolon, etc. Parser designers have to be
careful here because one wrong correction may lead to an infinite loop.
4.2.3 Error Productions

Some common errors are known to the compiler designers that may occur in the code.
In addition, the designers can create augmented grammar to be used, as productions that
generate erroneous constructs when these errors are encountered.
4.2.4 Global Correction

The parser considers the program in hand as a whole and tries to figure out what the
program is intended to do and tries to find out a closest match for it, which is error-free.

When an erroneous input (statement) X is fed, it creates a parse tree for some closest
error-free statement Y. This may allow the parser to make minimal changes in the source
code, but due to the complexity (time and space) of this strategy, it has not been
implemented in practice yet.

4.3 Abstract Syntax Trees(AST)

Parse tree representations are not easy to be parsed by the compiler, as they contain
more details than actually needed. Take the following parse tree as an example:

44

Worked out Examples and MCQs for NET/SET

If watched closely, we find most of the leaf nodes are single child to their parent nodes.
This information can be eliminated before feeding it to the next phase. By hiding extra
information, we can obtain a tree as shown below:

+/T\id
id/ \id

Abstract tree can be represented as:

*// \\
/3

ASTs are important data structures in a compiler with least unnecessary information.
ASTs are more compact than a parse tree and can be easily used by a compiler.

d

+

Summary

e Errors may be encountered at various stages of the compilation process.
e The parser may discover Syntactic errors.

e Syntactic occurs when there no precedence errors.

e AST is a data structure more compact than the parse tree.

e Augmented grammar is used to generate erroneous constructs.

e Global error correction may done.

Questions

1. Explain various types of errors.

2. Describe error handling with neat diagram.

3. Write note on panic mode.

4. Differentiate parse tree and abstract syntax tree.

45

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

SEMANTIC ANALYSIS

5.1 Introduction

We have learnt how a parser constructs parse trees in the syntax analysis phase. The
plain parse-tree constructed in that phase is generally of no use for a compiler, as it does
not carry any information of how to evaluate the tree. The productions of context-free
grammar, which makes the rules of the language, do not accommodate how to interpret
them.
For example:

E—-E+T

The above CFG production has no semantic rule associated with it, and it cannot help
in making any sense of the production.

Semantics

Semantics of a language provide meaning to its constructs, like tokens and syntax
structure. Semantics help interpret symbols, their types, and their relations with each
other. Semantic analysis judges whether the syntax structure constructed in the source
program derives any meaning or not.

CFG + semantic rules = Syntax Directed Definitions
For example:
int a = “value”;

Should not issue an error in lexical and syntax analysis phase, as it is lexically and
structurally correct, but it should generate a semantic error as the type of the assignment
differs. These rules are set by the grammar of the language and evaluated in semantic
analysis. The following tasks should be performed in semantic analysis:

» Scope resolution
» Type checking
*» Array-bound checking

5.2 Semantic Actions

e Syntax directed translation schema is merely a context-free grammar in which a
program fragment called an output action is associated with each production.

e A value associated with a grammar symbol is called a translation of that symbol.

5.2.1 The syntax directed translation:

e Schema allows subroutines or semantic actions to be attached to the productions of a
context free grammar.

e These subroutines generate intermediate code when called at appropriate time by a
parser for that grammar.

e [t enables the compiler designer to express the generation of intermediate code directly
in terms of the syntactic structure of the source language.

Example :

Production Semantic Action
E->E +E {E.Val :=E .val+E .val}

» The semantic action is enclosed in braces, and it appears after the production.
» This translation is not suitable for a compiler, but for a “DESK CALCULATOR”
program that actually evaluates expressions rather than generating code for them.

46

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

Consider, A > XYZ {Y.Val := 2* A.Val }

Here, the translation of a non-terminal on the Right side of the production is defined
in terms of non-terminal on the Left side. Such a translation is called inherited
translation.

5.2.2 Translation on the parse tree
Consider the following syntax-directed translation schema suitable for a “DESK

CALCULATOR” program in which E.Val is an integer-valued translation.

PRODUCTION SEMANTIC ACTION

E>E+E (E.VAL :=E .VAL+E .VAL}

E >Digit (E.VAL := digit }

Here, digit stands for any digit between 0 & 9.
Example:
Let the input string be 5+3*4, and then the parse tree is

Input: 5+3%4

M— A —m,
-
*
e

[oN
g
|- J—
-

digit

5.2.3 Implementation Of Syntax-Directed Translators

» The syntax directed translation scheme is a convenient description used to construct
the parse tree, mechanism used to compute the translation.

» Describes an input-output mapping.

* One way to implement a syntax-directed translator is to use extra fields in the parser
stack entries corresponding to the grammar symbol.

There are 2 steps to implement:

» Decide what intermediate code to generate for each programming language construct.

» Implement an algorithm for generating this code.

Example :
S>ES$
E-> E+E
E-> E*E
E-> (E)
E-> ()
[>1
[-> I Digit
[Note I — for integer]
» To implement this syntax — directed translation scheme, we need to construct a lexical
analyzer and a bottom-up parser.

47

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

PRODUCTION SEMANTIC ACTION
1. S>E$ {print E.Val}
2. E2E +E {E.Val : =E.Val+E.Val}
3. E2E*E {E.Val : =E.Val*E.Val }
4. E>(E) {E.Val : =E.Val}
5. E-I {E.Val : =I.Val }
6. I->I digit {L.VAL: = 10*.VAL+LEXVAL}
7. I->digit {1I.VAL: = LEXVAL }

5.3 Parse Tree (Annotated parse tree / Dependency Graph):

Input: 5+3%4 L
//‘///
E.val=17 return

E.val=5 » Tval=12

\ L SN
T.val=5 Tval=3 * Fval=4

\ |
F.val=5 F.val=3 digit.lexval=4

digit.lexval=5 digit.lexval=3

= A compiler — compiler would tie the parser and the semantic action program fragments
together, producing one module.

PRODUCTION PROGRAM FRAGMENT

1. S->E$ Print VAL [TOP]

2. E2>E+E |VAL[TOP]:=VAL[TOP]+VAL[TOP-2]
3. E2>E*E |VAL[TOP]|:=VAL[TOP]*VAL|TOP-2]
4. E>(E) VAL[TOP]:=VAL[TOP-1]

5. E->I none

6. I2>Idigit [VAL[TOP]:=10*VAL[TOP]+LEXVAL
7. I>digit VAL|TOP]:=LEXVAL

Input : 23*5+4$

NO| INPUT |[STATE| VAL PRODUCTION USED)
1. 23*5+4$ - -

2. | 3*5+4$ 2 -

3. | 3*5+4$ [2 1> digit
4. | *5+4$ 3 0-

5. | *5+4$ [(23) > I digit
6. | *5+4$E 23) [ESI

7. 5+4$E* |(23)-

8. +4$ [E*5 |23)- -

0. +4$ [E*I |(23)-5 [> digit
10| +4$ E*E |23)-5 E-I

11] +4$E (115) [E>E‘E
12. a8E+ |(115)-

13. $E+4 [(115)- 1

14. $E+T |[(115)-4 > digit

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

15. SE+E |(115)-4[E>I
16. SE (119) [E>E+E
17. —-E$ [(119)-

18. IS - S> ES$

[Sequence of moves]

5.4 Semantic Errors
We have mentioned some of the semantic errors that the semantic analyzer is expected
to recognize:
Type mismatch
Undeclared variable
Reserved identifier misuse
Multiple declaration of variable in a scope
Accessing an out of scope variable
Actual and formal parameter mismatch

S e

5.5 Attribute Grammar

Attribute grammar is a special form of context-free grammar where some additional
information (attributes) are appended to one or more of its non-terminals in order to
provide context-sensitive information. Each attribute has well-defined domain of values,
such as integer, float, character, string, and expressions.

Attribute grammar is a medium to provide semantics to the context-free grammar and
it can help specify the syntax and semantics of a programming language. Attribute
grammar (when viewed as a parse-tree) can pass values or information among the nodes
of a tree.

Example:

E —» E + T { E.value = E.value + T.value }

The right part of the CFG contains the semantic rules that specify how the grammar
should be interpreted. Here, the values of non-terminals E and T are added together and
the result is copied to the non-terminal E.

Semantic attributes may be assigned to their values from their domain at the time of
parsing and evaluated at the time of assignment or conditions. Based on the way the
attributes get their values, they can be broadly divided into two categories : synthesized
attributes and inherited attributes.

5.6 Synthesized Attributes

These attributes get values from the attribute values of their child nodes. To illustrate,
assume the following production:

S — ABC

If S is taking values from its child nodes (A,B,C), then it is said to be a synthesized
attribute, as the values of ABC are synthesized to S.

As in our previous example (E — E + T), the parent node E gets its value from its child
node.

Synthesized attributes never take values from their parent nodes or any sibling nodes.
5.7 Inherited Attributes

In contrast to synthesized attributes, inherited attributes can take values from parent
and/or siblings. As in the following production,
S — ABC

49

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

A can get values from S, B, and C. B can take values from S, A, and C. Likewise, C can
take values from S, A, and B.
Expansion: When a non-terminal is expanded to terminals as per a grammatical rule.

expansion
uononpal

Reduction

When a terminal is reduced to its corresponding non-terminal according to grammar
rules. Syntax trees are parsed top-down and left to right. Whenever reduction occurs, we
apply its corresponding semantic rules (actions).

Semantic analysis uses Syntax Directed Translations to perform the above tasks.

Semantic analyzer receives AST (Abstract Syntax Tree) from its previous stage (syntax
analysis).

Semantic analyzer attaches attribute information with AST, which are called
Attributed AST.

Attributes are two tuple value, <attribute name, attribute value>

For example:

int value =5;

<type, “integer”>

<presentvalue, “5”>

For every production, we attach a semantic rule.

S-attributed SDT

If an SDT uses only synthesized attributes, it is called as S-attributed SDT. These
attributes are evaluated using S-attributed SDTs that have their semantic actions written
after the production (right hand side).

E.value = E.value + T.value

TN “.
."L. E / ‘ “"
{E (+) T
v 'y -
E.value i T.value

50

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

As depicted above, attributes in S-attributed SDTs are evaluated in bottom-up parsing,
as the values of the parent nodes depend upon the values of the child nodes.

L-attributed SDT

This form of SDT uses both synthesized and inherited attributes with restriction of not
taking values from right siblings.

In L-attributed SDTs, a non-terminal can get values from its parent, child, and sibling
nodes. As in the following production,

S —- ABC

S can take values from A, B, and C (synthesized). A can take values from S only. B can
take values from S and A. C can get values from S, A, and B. No non-terminal can get
values from the sibling to its right.

Attributes in L-attributed SDTs are evaluated by depth-first and left-to-right parsing
manner.

L-attributed SDT

S-attributed
SDT

Figure 5.1 Hierarchy of SDT
We may conclude that if a definition is S-attributed, then it is also L-attributed, as L-
attributed definition encloses S-attributed definitions.

5.8 Runtime Environment

A program as a source code is merely a collection of text (code, statements, etc.) and to
make it alive, it requires actions to be performed on the target machine. A program needs
memory resources to execute instructions. A program contains names for procedures,
identifiers, etc., that require mapping with the actual memory location at runtime.

By runtime, we mean a program in execution. Runtime environment is a state of the
target machine, which may include software libraries, environment variables, etc., to
provide services to the processes running in the system.

Runtime support system is a package, mostly generated with the executable program
itself and facilitates the process communication between the process and the runtime
environment. It takes care of memory allocation and de-allocation while the program is
being executed.

5.9 Activation Trees

A program is a sequence of instructions combined into a number of procedures.
Instructions in a procedure are executed sequentially. A procedure has a start and an end
delimiter and everything inside it is called the body of the procedure. The procedure
identifier and the sequence of finite instructions inside it make up the body of the
procedure.

The execution of a procedure is called its activation. An activation record contains all
the necessary information required to call a procedure. An activation record may contain
the following units (depending upon the source language used).

51

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

Temporaries Stores temporary and intermediate
values of an expression.

Local Data Stores local data of the -called|
procedure.

Machine Status Stores machine status such as

Registers, Program Counter, etc.,

before the procedure is called.

Control Link

Stores the address of activation|
record of the caller procedure.

)Access Link

Stores the information of data which|
is outside the local scope.

IActual
Parameters

Stores actual parameters, i.e.,
parameters which are used to send

input to the called procedure.

Return Value

Stores return values.

Whenever a procedure is executed, its activation record is stored on the stack, also
known as control stack. When a procedure calls another procedure, the execution of the
caller is suspended until the called procedure finishes execution. At this time, the
activation record of the called procedure is stored on the stack.

We assume that the program control flows in a sequential manner and when a
procedure is called, its control is transferred to the called procedure. When a called
procedure is executed, it returns the control back to the caller. This type of control flow
makes it easier to represent a series of activations in the form of a tree, known as the

activation tree.

To understand this concept, we take a piece of code as an example:
printf(“Enter Your Name: “); scanf(“%s”, username); show_data(username);
printf(“Press any key to continue...”);

int show_data(char *user)

{

rintf(“Your name is %s”, username); return 0O;
b b b

}

Given below is the activation tree of the code:

52

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

scanf ()

at

printf ()

printf ()

Now we understand that procedures are executed in depth-first manner, thus stack

allocation is the best suitable form of storage for procedure activations.

SUMMARY

Syntax directed translation is a context free grammar.

Syntax directed translation is helps to generates Intermediate code.

Sematic actions is enclosed in curly braces.

The translation of a non-terminal on the Right side of the production is defined in
terms of non-terminal on the Left side is called inherited translation.

Input and output mapping is described using Syntax directed translator.

The parse tree having values in the node is called Annotated Parse tree.

Questions

1.

Explain syntax directed translation.

2. Define sematic actions.

3. Write note on decency graph.

4. Generate a sematic action for production S> E$
E>E + E/ E*E/(E)/(])

[->1/1digit (Where I is a Integer)

53

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

6. SYMBOL TABLE

8.1Introduction
Symbol table is an important data structure created and maintained by compilers in

order to store information about the occurrence of various entities such as variable

names, function names, objects, classes, interfaces, etc. Symbol table is used by both the
analysis and the synthesis parts of a compiler.

A symbol table may serve the following purposes depending upon the language in hand:

e To store the names of all entities in a structured form at one place.

e To verify if a variable has been declared.

e To implement type checking, by verifying assignments and expressions in the source
code are semantically correct.

e To determine the scope of a name (scope resolution).

8.2 Symbol Tables

= A compiler needs to collect and use information about the names appearing in the
source program. This information is entered into a data structure called a Symbol
Table.

» Thus, the information collected about the name includes the string of characters by
which it is denoted, its type (e.g. Integer, real, string), its form (e.g. simple variable a
structure), its location in memory and other attributes depending on the language

= Each entry in the symbol table is a pair of the form (name and information)

= Each time a name is encountered, the symbol table is searched to see whether that
name has been seen previously. If it is new, then it is entered into the table.

» Information about the name is entered into the symbol table during lexical and
syntactic analysis.

= Symbol table is used in the several stages of the compiler.

8.2.1 The Contents of a Symbol Table
A symbol table is simply a table which can be either linear or a hash table. It
maintains an entry for each name in the following format:
<symbol name, type, attribute>
For example, if a symbol table has to store information about the following variable
declaration:
static int interest;
then it should store the entry such as:
<interest, int, static>
The attribute clause contains the entries related to the name.
» Using a Symbol Table, we can able to
(i) determine whether a given name is in the table
(i) add a new name to the table
(iii) access the information associated with a given name, and
(iv) add new information for a given name
(v) delete a name or group of names from the table
» There may be separate tables for variable names, labels, procedure names, constants,
field names and other types of names depending on the language.
» Depending on how lexical analysis is performed, it may be useful to enter keywords
(reserved keywords) into the symbol table initially. If not a warning may occur.
= Let us consider the data can be associated with a name in the symbol table, This
information includes,

54

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

1. The string of characters denoting the name.

2. Attributes of the name and information identifying what use is being made of the
name.

3. Parameters, (Dimensions of arrays etc.)

4. An offset describing the partition in storage to be allocated for the name.

5. The syntax of the language may also implicitly declared variables to play certain role.

8.2.1.1 Names and Symbol — Table Records

= The simplest way to implement a symbol table is as a linear array of records, one
record per name.

= A record consists of number of consecutive words of memory, identifier.

8.2.1.2 Reusing Symbol — Table space

= The identifier used by the programmer to denote a particular name must be preserved
in the symbol table until no further references to that identifier can possibly denote
the same name.

= This is essential so that all users of the identifier can be associated with the same
symbol table entry, and hence the same name.

= A compiler can be designed to run in less space if the space used to store identifiers
can be reused in subsequent passes.

8.2.1.3 Array Names

= If the language places a limit on the number of dimensions, then all subscript
information can in principle, be paced in the symbol table record itself

» The upper limit and lower limit of a dynamically allocated array can be any expression
evaluate at run time, when the storage is allocated for the array.

» If an expression is a constant, its value can be stored in the symbol table.

» If a limit is declared to be an expression, the compiler must generate code to evaluate
that expression and assign the result to a temporary variable T.

8.2.1.4Indirection In Symbol-Table Entries

» Designing Symbol-Table formats that have pointers to information that is of variable
length.

» Save space i.e. allocating in each symbol-table entry the maximum possible amount of
space.

» The most significant advantage in using indirection comes when we, have a type of
information that is applicable to only a minority of the entries.

8.2.1.5 Storage Allocation Information

» To denote the locations in the storage belonging to objects at run time.

» Static storage -> if the object code is assembly language - generating assembly code
->scan the symbol table - generates definition - appended to the executable portion.

» Machine code - generated by compiler — stored with a fixed origin.

= The same remark applies to blocks of data loaded as a module separate from the
executable program.

» In the case of names where storage is allocated on a stack, the compiler need not
allocate storage at all.

» The compiler must plan out the activation record for each procedure.

55

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

Extra space for arrays and structures

Space for simple names and pointers to
arrays, structures, etc.
Fixed data — E.g.:, return address, pointer to
next

Figure 6.1 Activation Record

8.3Implementation of Symbol Table

If a compiler is to handle a small amount of data, then the symbol table can be
implemented as an unordered list, which is easy to code, but it is only suitable for small
tables only.

8.3.1 Data Structure for Symbol Tables

= In designing a Symbol-Table mechanism, there should be a scheme that allows,
adding new entries and finding existing entries in a table efficiently.

= A symbol table can be implemented in one of the following ways:

1. Linear (sorted or unsorted) list

2. Binary Search Tree

3. Hash table

Among all, symbol tables are mostly implemented as hash tables, where the source
code symbol itself is treated as a key for the hash function and the return value is the
information about the symbol.

» Each scheme is evaluated on the basis of the time required to add n entries and make
in enquiries

8.3.2 Lists

» Simple and easy to implement.

» Use a single array or equivalent several arrays to store names and associated
information.

» To retrieve information about a name, we have to search from the beginning of the
array up to the partition marked by pointer AVAILABLE, which indicates the beginning
of the empty portion of the array.

»* To add a new name, stores it immediately following AVAILABLE and increase the
pointer by the width of a symbol-table record.

Self-Organizing Lists

= Needs little extra space, save a little bit time.
= Three fields, NAME1, DATA1, and LINK]1 are there.

56

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

=
NAME 1
DATA 1
LINK 1

FIRST =—~—u_] NAME 2

DATA 2

LINK 2
\

NAME 3
DATA3 =————

LINK 3

8.3.3 Search Trees
= To add two link fields, LEFT, RIGHT, to each record.
= Use these fields to link the records into a binary search tree.
While p # null do
If NAME =NAME (p) then /* Name found, take action on success
Else if NAME<NAME (p) then p: =LEFT (p) /*visit left child*/
Else if NAME (p) <NAME then p: =RIGHT (p) /*visit right child*/

8.3.4 Hash Tables

-
NAME 1
Name DATA 1
LINK 1

\ NAME 2
DATA 2

LINK 2
k

= NAME 3
Hash Table
ash lable DATA 3 \

LINK 3

» Two tables, a hash table and a storage table are used.

» Hashing mean variation of searching techniques.

Open hashing - no limit on the number of entries.
The Average time to insert n’ Name and to make ‘®’ enquires is n (n+e)/m
If m is large, average time will be reduced.
If m is smaller, average time will be high.

Hashing Method

» Consist of a fixed away of m pointers to table entries.

» Table entries organized into ‘m’ separate linked list called buckets

*» The hash table consists of K words, numbered a, 1.... K-1. > There are pointers to
the storage table.

= Hash function h such that h (NAME) is an integer value between O and k-1, is used to
find whether NAME is in the symbol table.

57

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

Characteristic
= Uniform Distribution

8.4 Operations

A symbol table, either linear or hash, should provide the following operations.
8.4.1 insert()

This operation is more frequently used by analysis phase, i.e., the first half of the
compiler where tokens are identified and names are stored in the table. This operation is
used to add information in the symbol table about unique names occurring in the source
code. The format or structure in which the names are stored depends upon the compiler
in hand.

An attribute for a symbol in the source code is the information associated with that
symbol. This information contains the value, state, scope, and type about the symbol. The
insert() function takes the symbol and its attributes as arguments and stores the
information in the symbol table.

For example:

int a;

should be processed by the compiler as:
insert(a, int);

8.4.2 lookup|)
lookup () operation is used to search a name in the symbol table to determine:
If the symbol exists in the table.
If it is declared before it is being used.
If the name is used in the scope.
If the symbol is initialized.
If the symbol declared multiple times.
The format of lookup() function varies according to the programming language. The
basic format should match the following:
lookup(symbol)
This method returns O (zero) if the symbol does not exist in the symbol table. If the
symbol exists in the symbol table, it returns its attributes stored in the table.

S S

8.4.3 Scope Management

A compiler maintains two types of symbol tables: a global symbol table which can be
accessed by all the procedures and scope symbol tables that are created for each scope in
the program.

To determine the scope of a name, symbol tables are arranged in hierarchical
structure as shown in the example below:

int value=10;

void pro_one|()
{

int one_1; int one_2;

{

int one_3; inner scope 1

58

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

int one_4;

}

int one_5;

{

int one_6; inner scope 2
int one_7;

H

H

void pro_two()

{

int two_1;

int two_2;

{

int two_3; inner scope 3
int two_4;

H

int two_5;
}

The above program can be represented in a hierarchical structure of symbol tables:
Global Symbol Table

value var |int

pro_one proc |int

pro_two proc |int

pro_one Symbol Table / \ pro_two Symbol Table

one_1 |var |int two_l1 |var |int

one_2 |var | int two_2 |var |int

one_5 var |int two 5 |var |int
one_3 |var | int one_6 |var | int two_3 |var |int
one_4 |var |int one 7 |var | int two_4 |var |int
inner scope 1 inner scope 2 inner scope 3

The global symbol table contains names for one global variable (int value) and two
procedure names, which should be available to all the child nodes shown above. The
names mentioned in the pro_one symbol table (and all its child tables) are not available for
pro_two symbols and its child tables.

This symbol table data structure hierarchy is stored in the semantic analyzer and
whenever a name needs to be searched in a symbol table, it is searched using the
following algorithm:

1. first a symbol will be searched in the current scope, i.e., current symbol table,

2. if a name is found, then search is completed, else it will be searched in the parent
symbol table until,

3. either the name is found or the global symbol table has been searched for the name.

8.5Implementation of A simple stack — Allocation Scheme

» Consider an implementation of the UNIX programming language C.

59

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

= Data in C can be global, meaning it is allocated as static storage and available to any
procedure or local, meaning it can be accessed only by the procedure in which it is
declared.

6.6 Implementation of Block-Structure Languages

e Here activation records must be reserved for blocks.

e Permit array of adjustable length.

The data-referencing environment of a procedure or block includes all procedures and

blocks surrounding it in the program.

e Display, parameter passing, creation of space for arrays.

6.7 Storage Allocation in FORTRAN

e Permits static storage allocation

e Compiler can create a number of data areas, in which the values of names can be
stored.

Two Types of data areas:

* common

» equivalence

6.7.1 Data in Common Area

e For each block, a record giving the first and last names of the current routine that are
declared to be in that common block.

COMMON / BLOCK1 NAME1 /NAME2

e Creates a common Block Block1.

e NAME1 AND NAME2 set a pointer to the symbol-table entry for BLOCK 1.

6.7.2 A Simple Equivalence Algorithm

Equivalence statements all of the form
EQUIVALENCE A, B+OFFSET

Where A and B are the names of locations.

e The effect of the above statement is to make A denote the location which is OFFSET
memory units beyond the location for B.

e The sequence of EQUIVALENCE statements groups names into equivalence sets whose
partitions relative to one another are all defined by the EQUIVALENCE statements.

E.g.:
EQUIVALENCE A, B+100
EQUIVALENCE C, D-4
EQUIVALENCE A, C+30
EQUIVALENCEE, F

e Last in First out use of Temporaries, if so many temporary variables.

6.8 Storage Allocation in Block-Structured Languages

e When an array is declared, the count is incremented by the size of a pointer rather
than by the size of the array itself.

e Follows LIFO — when handling temporaries.

6.9 Storage Allocation
Runtime environment manages runtime memory requirements for the following
entities:
[l Code : It is known as the text part of a program that does not change at runtime. Its
memory requirements are known at the compile time.

60

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

[0 Procedures : Their text part is static but they are called in a random manner. That is
why, stack storage is used to manage procedure calls and activations.

[0 Variables : Variables are known at the runtime only, unless they are global or
constant. Heap memory allocation scheme is used for managing allocation and de-
allocation of memory for variables in runtime.

6.9.1 Static Allocation
In this allocation scheme, the compilation data is bound to a fixed location in the

memory and it does not change when the program executes. As the memory requirement

and storage locations are known in advance, runtime support package for memory
allocation and de-allocation is not required.

6.9.2 Stack Allocation
Procedure calls and their activations are managed by means of stack memory

allocation. It works in last-in-first-out (LIFO) method and this allocation strategy is very

useful for recursive procedure calls.

6.9.3 Heap Allocation
Variables local to a procedure are allocated and de-allocated only at runtime. Heap

allocation is used to dynamically allocate memory to the variables and claim it back when

the variables are no more required. Except statically allocated memory area, both stack
and heap memory can grow and shrink dynamically and unexpectedly. Therefore, they
cannot be provided with a fixed amount of memory in the system.

Text Memory
< Static Data

Stack Memory

Fixed

Dynamic

Heap Memory

Figure 6.2 Memory Allocation
As shown in the image above, the text part of the code is allocated a fixed amount of
memory. Stack and heap memory are arranged at the extremes of total memory allocated
to the program. Both shrink and grow against each other.

Parameter Passing

The communication medium among procedures is known as parameter passing. The
values of the variables from a calling procedure are transferred to the called procedure by
some mechanism. Before moving ahead, first go through some basic terminologies
pertaining to the values in a program.
r-value

The value of an expression is called its r-value. The value contained in a single variable
also becomes an r-value if it appears on the right-hand side of the assignment operator. r-
values can always be assigned to some other variable.
l-value

The location of memory (address) where an expression is stored is known as the I-
value of that expression. It always appears at the left hand side of an assignment operator.

61

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

For example:

day = 1;
week = day * 7;
month = 1;

year = month * 12;

From this example, we understand that constant values like 1, 7, 12, and variables
like day, week, month, and year, all have r-values. Only variables have 1-values, as they
also represent the memory location assigned to them.

For example:
7T=x+Yy;
is an l-value error, as the constant 7 does not represent any memory location.

Formal Parameters
Variables that take the information passed by the caller procedure are called formal
parameters. These variables are declared in the definition of the called function.

Actual Parameters
Variables whose values or addresses are being passed to the called procedure are
called actual parameters. These variables are specified in the function call as arguments.
Example:
fun_one()
{
int actual_parameter = 10;
call fun_two(int actual_parameter);
}
fun_two(int formal_parameter)
{
print formal_parameter;
}
Formal parameters hold the information of the actual parameter, depending upon the
parameter passing technique used. It may be a value or an address.

Pass by Value

In pass by value mechanism, the calling procedure passes the r-value of actual
parameters and the compiler puts that into the called procedure’s activation record.
Formal parameters then hold the values passed by the calling procedure. If the values
held by the formal parameters are changed, it should have no impact on the actual
parameters.

Pass by Reference

In pass by reference mechanism, the 1-value of the actual parameter is copied to the
activation record of the called procedure. This way, the called procedure now has the
address (memory location) of the actual parameter and the formal parameter refers to the
same memory location. Therefore, if the value pointed by the formal parameter is changed,
the impact should be seen on the actual parameter, as they should also point to the same
value.

62

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

Pass by Copy-restore

This parameter passing mechanism works similar to ‘pass-by-reference’ except that
the changes to actual parameters are made when the called procedure ends. Upon
function call, the values of actual parameters are copied in the activation record of the
called procedure. Formal parameters, if manipulated, have no real-time effect on actual
parameters (as l-values are passed), but when the called procedure ends, the 1-values of
formal parameters are copied to the l-values of actual parameters.
Example:
int y; calling procedure()
{
y = 10;
copy_restore(y); //1-value of y is passed printfy; //prints 99
}
copy_restore(int x)
{
x =99; // y still has value 10 (unaffected) y = 0; // y is now O
}

When this function ends, the l-value of formal parameter x is copied to the actual
parameter y. Even if the value of y is changed before the procedure ends, the l-value of x is
copied to the 1-value of y, making it behave like call by reference.

Pass by Name

Languages like Algol provide a new kind of parameter passing mechanism that works
like preprocessor in C language. In pass by name mechanism, the name of the procedure
being called is replaced by its actual body. Pass-by-name textually substitutes the
argument expressions in a procedure call for the corresponding parameters in the body of
the procedure so that it can now work on actual parameters, much like pass-by-reference.

Summary

e Symbol table also called Book Keeping.

e Each entry in the Symbol table is a pair of the form Name and Information.

e Information are entered into the Symbol table during Lexical and Syntactic phases.

e AVAILABLE is a pointer which indicates the beginning of the empty portion of the
Array.

e Stack pointer is used to point a particular position an activation record.

e LIFO mechanism is using in handling temporaries.

e Symbol tables are mostly implemented as hash tables.

e The source code symbol itself is treated as a key for the hash function.

e The return value from hash table is the information about the symbol.

Question

Explain the contents of Symbol Table.

Describe the data structures for Symbol table.

Explain the Stack allocation scheme.

Write note on Storage Allocation in Block structure Language.
Briefly explain

Common Data area.

Equivalence Data area.

ok wbd=

63

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET
INTERMEDIATE CODE GENERATION

8.6Introduction

A source code can directly be translated into its target machine code, then why at all
we need to translate the source code into an intermediate code which is then translated to
its target code? Let us see the reasons why we need an intermediate code.

Intermediate

> —

i Code e

e N

e T S S S >~ Target Code

\
-

Figure 7.1 Role of Intermediate code

If a compiler translates the source language to its target machine language without
having the option for generating intermediate code, then for each new machine, a full
native compiler is required.

Intermediate code eliminates the need of a new full compiler for every unique machine
by keeping the analysis portion same for all the compilers. The second part of compiler,
synthesis, is changed according to the target machine.

It becomes easier to apply the source code modifications to improve code performance
by applying code optimization techniques on the intermediate code.

8.7Intermediate Representation

Intermediate codes can be represented in a variety of ways and they have their own
benefits.
8.7.1 High Level IR - High-level intermediate code representation is very close to the
source language itself. They can be easily generated from the source code and we can
easily apply code modifications to enhance performance. But for target machine
optimization, it is less preferred.
8.7.2 Low Level IR - This one is close to the target machine, which makes it suitable for
register and memory allocation, instruction set selection, etc. It is good for machine-
dependent optimizations.
There are 3 types of intermediate representations discussed below,
(i) Post Fix
(ii)) Syntax tree
(iii) 3-Address code, Quadruples and Triples.

8.8Implementation of Intermediate code generator

» Intermediate codes are machine independent codes, but they are close to machine
instruction.

» The given program in source language is converted to an equivalent program in an
intermediate language, by the intermediate code generator.

» Intermediate languages can many different languages, and designer of compiler
decides this intermediate language.
v' Postfix notation can be used as an intermediate language
v/ Syntax tree can be used as an intermediate language.
v' Three address code (Quadruples)

64

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

= Quadruples are close to machine instruction. But they are not machine instructions.
v' Some programming languages have well defined intermediate languages.
= Java = java virtual machine.
* Prolog = warren obstruct machine.
In fact, there are byte code emulators to execute instructions in these intermediate
languages.
8.8.1 Postfix: (Reverse Polish or Postfix Polish)
= Places the operator at the right end.

Examples:
S.No Infix Postfix
1 atb ab+
2 (atb)*c ab+c*
3 a*(b+c) abc+*
4 (a+b)*(c+d) ab+cd+*
5 If a then if c-d then a+c else a*c else a+b acd-actac*? ab+?

8.8.1.1 Evaluation of postfix expressions
= To evaluate the postfix expression, a stack is used.
» The general strategy is to scan the postfix code left to right.

Consider ab+c*, to evaluate 13+5*

The actions are,

1. stackl

2. stack 3

3. Add the two topmost elements, pop them off the stack and then stack the result 4.

4. stack 5

S. Multiply the two topmost elements pop them off the stack and then stack the result

The syntax directed translation scheme for a simple grammar is given by,

Production Semantic action

1. E -> EWOpER) E.code := E.code || E@.code| | ‘op’
2. E -> (E) E.code := Elll.code

3.E->id E.code :=id

Note: Parenthesized expression is the same as the unparenthesized expression.
The program fragment corresponding to the above semantic actions are

Production Program Fragment
E -> EO OP E@) { Print op }
E -> EO) i
E ->id {Print id}

The sequence of moves for a+b*c

1. shifta
2. reduce by E -> id and print a
3. shift +
4. shiftb

65

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

5. reduce by E -> id and print b

6. shift *

7. shift c

8. reduce by E-> id and print c

9. reduce by E -> E op E and print +
10. reduce by E -> E op E and print *

8.8.2 Parse tree and Syntax Tree:
= Ifa tree in which each leaf represents an operand and each interior node an operator.
E.g.:

(i) a* (b+c)/d [abct+*d/]

* d
a +
b C

(ii) if a=b then a:=c+d else b:=c-d

If then else

/l\

/\/\

Syntax directed translation scheme for syntax trees:

Production Semantic Action

E ->E® op E@ { E.VAL:= NODE (op, EV.VAL, E®.VAL}
E -> (EW) { E.VAL:=E® VAL}

E ->-E® { E.VAL:= UNARY (-EV.VAL}

E->id (E.VAL:= LEAF (id)}

8.8.3 Three address code:
The general form is, A: =B opc

Where A,B, C are either programmer defined names, constructor or compiler generated
temporary names. Op stands for any operator.

66

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

= usually the “Three address code” contains address two for the operand and one for the
result
Additional 3-address statements:
Assignment statements of the form A:=B op C (binary arithmetic logical operator)
Assignment instruction, A:=op B (Unary operator) (A:=B-> B is assigned to A)
Unconditional: goto L.
Conditional : if A reop B goto L (relational op)
param A and call p,n
Eg: Procedure call:

Param Al

akwbd=

Param An
Call p,n
6. Indexed assignment : A:=BJI] (Location (array))
7. Pointer and address assignments,
A: = addr B(Address of B), A=*B(Value at B) and *A =B

The 3-address statement is an obstruct form of intermediate code. These statements
can be implemented by either of the following way,
» Quadruples
= Triples
» Indirect Triples
8.8.3.1 Quadruples
= record structure has 4 fields,
Op, argl, arg2, result
Op -> contains an internal code for the operator
Eg: -> A: =B op C puts B in ARG1, C IN ARG2 And A in RESULT.
» Conditional and unconditional jump put the target label in RESULT.

E.g.:
A:=-B* (C+D)
The 3-address code will be
T1;= —B

Ty.= C+D

Ts.=T1+Ts

A: = T3

The Quadruples representation be

Op ARGI1 ARG2 RESULT

0) Minus B - T,
(1) + (@ D T,
) * T, 5 T;
3) = T - A

8.8.3.2 Triples
= Used to avoid temporary names into the symbol table.
= Here only 3 Fields are used

67

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

= Parenthesized numbers are used to represent pointers into the triple structure

E.g.:
A:=-B* (C+D)
3-address code: T:.=-B
Ty:=C+D
T32=T1 * T2
Op ARGI1 ARG2
0) Minus B --
1 + € D
@) = 0) (D)
k) = A Q)
A: = T3

8.8.3.3 Indirect Triples
» Listing pointers to triples, rather than listing the triples themselves.

E.g.:
\ STATEMENT
) (14)
(D (15)
2 (16)
€©) (17)
Op ARG ARG2
(14) Minus B -
as) + (& D
(16) * (14) (15)
a7n = A (16)
A:=-B* (C+D)

8.9 Translation of Assignment Statements
» Translation of basic programming — language constructs into code of this form.
8.9.1 Assignment statements with Integer Types

- Statements involving only integer values

Example:

A ->id: =E Consists of code to evaluate E into sometimes operators
E->E+E | E*E | -E | ()| id

A means assignment statement.

68

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

8.9.2 The abstract Translation Scheme
Abstractly, the translation of E to be structure with two fields:

N —

E.PALCE, hold the value of the expression.
E.CODE, sequence of 3-address statements evaluating the expressions.

= A .CODE, which is a 3-address code to execute the assignment.
= Id . PLACE, to denote the name corresponding to this instance of taken id.
= To create new temporary name, NEWTEMP () is used to return an appropriate name.

Example:

PRODUCTION
A->1id:=E

E -> EO+E®

E ->-E®

E->id

SEMANTIC ACTION
{A.CODE:=E.CODE |[id PLACE || <:=’

|[E.PLACE}

{T=NEWTEMP(),
E.PLACE:=T;
E.CODE:=E().CODE || E?.CODE
EPLACE || ”:=" || EO.PLACE || “+”|
E®PLACE }

{T:=NEWTEMP(); EPLACE ==T;
E.CODE:=E".CODE ||
E.PLACE || ”:=-" || E®.PLACE }

{E.PLACE :=id.PLACE
E.CODE:= null;}

8.9.3 More Specified Form Of The Translation Scheme
» We shall use a procedure GEN (A:=B+C) to emit the three address statement A:=B+C
with actual values substituted for A,B and C. We can modify the above scheme in the

following way

Production

1
2
3)
4)

Call to GEN

GEN (id . PLACE =E.PLACE)

GEN (E . PLACE :=EW.PLACE+E® PLACE)
GEN (E . PLACE =-EW.PLACE)

NONE

8.9.4 Assignment Statement With Mixed Type

= Bottom up parse.

69

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

tmAsAsmasL Nivmmas v m A mimm mairmmas N o= v mommm irmmsmmims = o= o= o=

Input Stack Place Generate Code

A=-B* (C+D)

=-B*(C+D) 1d A

-B* (C+D) Id:= A-

B*(C+D) d:=- Aime

*(€E+D) Id:=-1id A--B

*(C+D) d:=-F A--B T1:=-B

= (C+D) Id:=E A-Tl

(C+D) Id:=E* ATl

C+D) Id:=E*(A==

+D) Id:=E*(id A=TFLeis

+D) Id:=E*(E A-T1--C

D) I1d:=E*(E+ A-T1--C-

) Id:=E*(E+id A-Tl--C-

) Id:=E*(E+E A-T1--C-D
Id:=E*(E+E) A-Tl--C-D T2=C+D
Id:E * (E) A-T1- -T2

8.10 Boolean Expression
8.10.1 3-Address statements for Boolean Expressions:
- The branching statements of the form:

goto L

if A goto L

if A relop B goto L

Here A and B is simple variables or constants, L is a quadruple Label and relop is any

of <, <, =#,0r=....

Consider the implementation of Boolean expression using 1 to denote TRUE and O to
denote FALSE.
Expression will be evaluated from left to right.

E.g.:
A relational expression if A<B then 1 else 0, its 3-address code will be,
(1) if A<B goto (4)

2) T:=0
(3) Goto (5)
(4) T:=1

8.10.2 3-address code for array reference:

We assume static allocation of arrays, where subscripts range from 1 to some limit
known at compile time.
Array elements are taken to require one word each.
Let A is A[l], A[2]...., if addr(A) denotes the 1st word of block, A[1l], then A[i] is in
location addr (A)+i-1.
If there were 4 bytes per word then the 3-address statement for A[i] is

T1;=4*i

To.=addr (a)-4

T32= T2 [T1]

Summary

The complexity of code generated by the intermediate code generator is in between the
source code and the machine code.

Intermediate is in form of 3-Address code.

Triples is to avoid temporary name into the Symbol table.

Intermediate codes are machine independent codes, but they are close to machine
instruction.

70

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

e The source language is converted to an equivalent program in an intermediate
language, by the intermediate code generator.
Questions:
1. Explain intermediate code representation.
2. Draw the Syntax tree for the following,
L.a+b*(c*a)-(c/a)
I1.if a<b then c=b else c=a
[lI.a-b*a+c
3. Write the postfix notation for the following,
L.a+b*(c*a)-(c/a)
I1.if a<b then c=b else c=a
[lI.a-b*at+c
4. Describe 3-Address code.
5. Explain Abstract Translation Scheme.

71

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET
CODE OPTIMIZATION

8.11 Introduction
Optimization is a program transformation technique, which tries to improve the code

by making it consume less resources (i.e. CPU, Memory) and deliver high speed.

1. The term “code optimization” refers to techniques, a compiler can employ in an
attempt to produce a better object language program than the most obvious for a given
source program.

2. The quality of the object program is generally measured by its size (for small
computation) or its running time (for large computation).

3. Itis theoretically impassible for a compiler to produce the best possible object program

for every source program under any reasonable cast function.

The accurate term for “code optimization” is "code improvement”.

S. There are many aspects to code optimization.

(i) Cast
(ii) Quick & straight forward translation (time).

>

8.12 The Principal Sources Of Optimization

= The code optimization techniques consist of detecting patterns in the program and
replacing these patterns by equivalent but more efficient construct.

Patterns may be local or global and replacement strategy may be machine dependent
or machine dependent.

8.12.1 Inner Loops

= “00-10” rule states that 90% of the time is spent in 10% of the code. Thus the most
heavily traveled parts of a program, the inner loops, are an obvious target for
optimization.

8.12.2 Language Implementation Details Inaccessible To the User:

The optimization can be done by

1) Programmer- Write source program (user can write)

2) Compiler -e.g.: array references are made by indexing, rather than by pointer or

address calculation prevents the programmer from dealing with offset calculations in

arrays.

8.13 Further Optimizations:
» The important sources of optimization are the identification of common sub expression
and replacement of run time computation by compile time computation.
= The term constant folding is used for the latter optimization.
Example:
A [i+1]:=B [i+1] is easier.
J: =i+l
Alj]:=Bj]
» There are three types of code optimization
I. Local optimization-performed within a straight line and no jump.
II. Loop optimization
[II. Data flow analysis-the transmission of useful information from one part of the
program to another.
Note:

72

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

Optimization is mainly depending on the algorithm
In optimization, high-level general programming constructs are replaced by very
efficient low-level programming codes. A code optimizing process must follow the three
rules given below:
1. The output code must not, in any way, change the meaning of the program.
2. Optimization should increase the speed of the program and if possible, the program
should demand less number of resources.
3. Optimization should itself be fast and should not delay the overall compiling process.
Efforts for an optimized code can be made at various levels of compiling the process.

1. At the beginning, users can change/rearrange the code or use better algorithms to
write the code.

2. After generating intermediate code, the compiler can modify the intermediate code by
address calculations and improving loops.

3. While producing the target machine code, the compiler can make use of memory
hierarchy and CPU registers.

Optimization can be categorized broadly into two types : machine independent and
machine dependent.

8.13.1 Machine-independent Optimization
In this optimization, the compiler takes in the intermediate code and transforms a part
of the code that does not involve any CPU registers and/or absolute memory locations. For

example:
do

{

item =10;

value = value + item;}while(value<100);

This code involves repeated assignment of the identifier item, which if we put this way:
Item =10;do

{

value = value + item;} while(value<100);

should not only save the CPU cycles, but can be used on any processor.

8.13.2 Machine-dependent Optimization

Machine-dependent optimization is done after the target code has been generated and
when the code is transformed according to the target machine architecture. It involves
CPU registers and may have absolute memory references rather than relative references.
Machine-dependent optimizers put efforts to take maximum advantage of memory
hierarchy.

8.13.3 Basic Blocks

Source codes generally have a number of instructions, which are always executed in
sequence and are considered as the basic blocks of the code. These basic blocks do not
have any jump statements among them, i.e., when the first instruction is executed, all the
instructions in the same basic block will be executed in their sequence of appearance
without losing the flow control of the program.

73

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

A program can have various constructs as basic blocks, like IF-THEN-ELSE, SWITCH-
CASE conditional statements and loops such as DO-WHILE, FOR, and REPEAT-UNTIL,
etc.
8.13.3.1 Basic Block Identification

We may use the following algorithm to find the basic blocks in a program:

1. Search header statements of all the basic blocks from where a basic block starts:
i. First statement of a program.

ii. Statements that are target of any branch (conditional /unconditional).

iii. Statements that follow any branch statement.

Header statements and the statements following them form a basic block.

3. A basic block does not include any header statement of any other basic block.

Basic blocks are important concepts from both code generation and optimization point
of view.

N

X =x + y; x=x +y;
y = 0; y = 0;
if(x > z) if(x > z)
{
Y = X7}
x++; Y = x;
} x++;
else
t . Y = z;
Yy = & z++;
z++;
}
w=x + 2z; | w=x+ z;
Source Code Basic Blocks

Basic blocks play an important role in identifying variables, which are being used more
than once in a single basic block. If any variable is being used more than once, the
register memory allocated to that variable need not be emptied unless the block finishes
execution.

Control Flow Graph

Basic blocks in a program can be represented by means of control flow graphs. A
control flow graph depicts how the program control is being passed among the blocks. It is
a useful tool that helps in optimization by locating any unwanted loops in the program.

74

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

B1

4 ENTER
w = 0; i
X =x+ y; l
y'= 05
if(x > z) B1]
B2 / \
Y = x; |
s B2 | B3
B3 \ /
Y = z; " B4 |
z++;
B4 l
w=x+ z; EXIT
Basic Blocks Flow Graph

8.14 Loop Optimization
Most programs run as a loop in the system. It becomes necessary to optimize the loops

in order to save CPU cycles and memory. Loops can be optimized by the following

techniques:

[0 Invariant code : A fragment of code that resides in the loop and computes the same
value at each iteration is called a loop-invariant code. This code can be moved out of
the loop by saving it to be computed only once, rather than with each iteration.

[Induction analysis : A variable is called an induction variable if its value is altered
within the loop by a loop-invariant value.

[1 Strength reduction : There are expressions that consume more CPU cycles, time, and
memory. These expressions should be replaced with cheaper expressions without
compromising the output of expression. For example, multiplication (x * 2) is expensive
in terms of CPU cycles than (x << 1) and yields the same result.

8.15 Dead-code Elimination
Dead code is one or more than one code statements, which are:
e Either never executed or unreachable,
e Or if executed, their output is never used.
Thus, dead code plays no role in any program operation and therefore, it can simply be
eliminated.

8.15.1 Partially Dead Code

There are some code statements whose computed values are used only under certain
circumstances, i.e., sometimes the values are used and sometimes they are not. Such
codes are known as partially dead-code.

l /' S=_3 loop

‘ | i a=%"%

75

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

The above control flow graph depicts a chunk of program where variable ‘a’is used to
assign the output of expression X * y’. Let us assume that the value assigned to ‘@’ is
never used inside the loop. Immediately after the control leaves the loop, ‘@’is assigned the
value of variable Z’, which would be used later in the program. We conclude here that the
assignment code of ‘a’ is never used anywhere, therefore it is eligible to be eliminated.

Likewise, the picture above depicts that the conditional statement is always false,
implying that the code, written in true case, will never be executed, hence it can be
removed.

a=1;
b=10

Y

ifa>b
Dead Code

-

8.15.2 Partial Redundancy

Redundant expressions are computed more than once in parallel path, without any
change in operands; whereas partial-redundant expressions are computed more than once
in a path, without any change in operands. For example,

a=yOP 2z a=yO0P z

b=yOP 2z

c= yoP z c =y OP z

[redundant expression] [partially redundant expression]

Loop-invariant code is partially redundant and can be eliminated by using a code-motion
technique.
Another example of a partially redundant code can be:
If (condition)
{
a=y OP z;
H

else

{

H
c=y OP z;

We assume that the values of operands (y and z) are not changed from assignment of
variable a to variable c. Here, if the condition statement is true, then y OP z is computed
twice, otherwise once. Code motion can be used to eliminate this redundancy, as shown
below:

76

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

If (condition)

{

tmp =y OP z;
a = tmp;

}

else

{

tmp =y OP z;

H

c = tmp;

Here, whether the condition is true or false; y OP z should be computed only once.

8.16 Code Optimization

8.16.1 Code Motion:

= An important source of modifications of the code is called code motion, where we take
a computation that yields the same result independent of the number of times through
the loop and place if before the loop.

8.16.2 Induction Variable:

= If some sequence of statements from arithmetic progressions, we say such identifiers
as induction variables.

* When two or more induction variable is a loop we an opportunity to get rid of all but
one, and we call this process, induction variable elimination.

E.g.:

While (I <= 20) {for i->1->20}
T1=4*1 {t1->4,8,....} AP

8.16.3 Reduction In Strength:

» The replacement of an expensive operation by a cheaper one is called reduction in

strength.

(T1:=4*I)= (T1=T1+4)

8.17 The Dag Representation Of Basic Blocks

= A useful data structure for automatically analyzing basic blocks is a directed acyclic
graph (DAG).

» DAG is a directed graph with no cycle.

» Constructing a DAG from 3 address statement is a good way of determining common
sub expressions.

8.17.1 DAG with following labels nodes:

= Leaves are labeled by unique identifiers.

» Interior nodes are labeled by an operator symbol.

» Nodes are also optionally given an extra set of identifiers for labels.(to store value)

8.17.2 Advantages

» We can detect common sub expression.

= We can determine value used in the block.

= Compute values used outside the block.

= To reconstruct a simplified list of quadruples.

77

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

Summary

Code optimization are called code improvement.

The aspect to Code is cost and Time

Constant timing is used for later optimization.
Optimization is mainly depends on the algorithm
Data structure to analyze basic blocks DAG.

DAG is the Direct Graph with no cycles.

DAG is useful to determine common sub expressions.

Questions

akwNe=

Explain the principle sources of Optimization.
Describe Loop Optimization.

Write note on reduction and Strength.
Describe DAG representation.

State the properties and uses of DAG.

78

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET
9. CODE GENERATION

9.1Introduction

Code generation can be considered as the final phase of compilation. Through post
code generation, optimization process can be applied on the code, but that can be seen as
a part of code generation phase itself. The code generated by the compiler is an object
code of some lower-level programming language, for example, assembly language. We have
seen that the source code written in a higher-level language is transformed into a lower-
level language that results in a lower-level object code, which should have the following
minimum properties:
1. It should carry the exact meaning of the source code.
2. It should be efficient in terms of CPU usage and memory management.

We will now see how the intermediate code is transformed into target object code
(assembly code, in this case).

9.2 Problems in Code Generation
e What instruction should we generate?
There are variety of ways —which way is select.
e In what order should we perform computations?
Picking best is difficult.
What Register should we use?
E.g.: - Certain machine requires register-pairs.

9.3 A simple code generator
» For each operator in a quadruple there is a corresponding machine code operator.
» Computed result can be left in registers as long as possible, storing them only
» If their registers is needed for another computation.
» Just before a procedure call, jump (or) labeled statement.
» Everything must be stored just before the end of a basic block.
Next_Use Information:
e To make more informed decisions concerning register allocation we compute the next
uses of each name in a quadruple.
Use is defined as,
E.g.: int n=5;
int i, j;
For (i=0; i<5; i++)
For (j=i+1; j<5; j++)

Computation.

The final result is stored.

9.4 Descriptor

The code generator has to track both the registers (for availability) and addresses
(location of values) while generating the code. For both of them, the following two
descriptors are used
Register descriptor: Register descriptor is used to inform the code generator about the
availability of registers. Register descriptor keeps track of values stored in each register.
Whenever a new register is required during code generation, this descriptor is consulted
for register availability.

79

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

Address descriptor: Values of the names (identifiers) used in the program might be stored
at different locations while in execution. Address descriptors are used to keep track of
memory locations where the values of identifiers are stored. These locations may include
CPU registers, heaps, stacks, memory or a combination of the mentioned locations.

Code generator keeps both the descriptor updated in real-time. For a load statement, LD
R1, x, the code generator:

[0 updates the Register Descriptor R1 that has value of x and

[0 updates the Address Descriptor (x) to show that one instance of x is in R1.

Register Allocation & Assignment:

There are various strategies for deciding what names in a program should reside in
registers, i.e. register allocation & in which register each should reside i.e. register
assignment.

Advantage: Simplifies the design of a compiler.
Disadvantage: When strictly handled, it uses registers inefficiently.

Global Register Allocation

e To assign registers to frequently used variables and keep their registers consistent
across block boundaries (globally).
Usage Counts: Reducing the usage of variables repeatedly in a loop and save cost and
time.

Register Assignments For Outloops:

» The above said same procedure is also followed here.

* When the outer and the inner loop have to access the same register, then the register
is declare outside to both the loops.

9.5The Basics of Code Generation

Basic blocks comprise of a sequence of three-address instructions. Code generator
takes these sequence of instructions as input.

Note: If the value of a name is found at more than one place (register, cache, or memory),
the register’s value will be preferred over the cache and main memory. Likewise, cache’s
value will be preferred over the main memory. Main memory is barely given any
preference.

getReg : Code generator uses getReg function to determine the status of available registers
and the location of name values. getReg works as follows:

» Ifvariable Y is already in register R, it uses that register.

» Else if some register R is available, it uses that register.

» Else if both the above options are not possible, it chooses a register that requires
minimal number of load and store instructions.

For an instruction x = y OP z, the code generator may perform the following actions.
Let us assume that L is the location (preferably register) where the output of y OP z is to
be saved:

[J Call function getReg, to decide the location of L.
[l Determine the present location (register or memory) of y by consulting the Address

Descriptor of y. If y is not presently in register L, then generate the following

instruction to copy the value of y to L:

80

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET
MOVy’, L

where y’ represents the copied value of y.
[0 Determine the present location of z using the same method used in step 2 for y and
generate the following instruction:

OPz,L

where z’ represents the copied value of z.

[0 Now L contains the value of y OP z, that is intended to be assigned to x. So, if L is a
register, update its descriptor to indicate that it contains the value of x. Update the
descriptor of x to indicate that it is stored at location L.

[0 Ify and z has no further use, they can be given back to the system.

Other code constructs like loops and conditional statements are transformed into
assembly language in general assembly way.

9.5.1 The Code-Generation Algorithm:

1. Invoke a function GETREG ().

2. Consult the address descriptor.

3. Generate the instruction & update the address descriptor.

4. If there is no next use then the result is obtained. Then those registers no longer will
contain the variables.

9.6 Code Generation from DAG’s
9.6.1 Directed Acyclic Graph

Directed Acyclic Graph (DAG) is a tool that depicts the structure of basic blocks, helps
to see the flow of values flowing among the basic blocks, and offers optimization too. DAG
provides easy transformation on basic blocks. DAG can be understood here:
1. Leaf nodes represent identifiers, names, or constants.
2. Interior nodes represent operators.
3. Interior nodes also represent the results of expressions or the identifiers/name where
the values are to be stored or assigned.

Example:
tO=a+b
tl=t0 +c
d=t0 +1tl
to (+ t(+ df+
/ X - \
/ ‘,V/ ‘ ‘//
a b to (+ c [% (&
7 e, ‘\ P
\ N /."
a ‘b >~
to (+ c
X
a ‘b

9.6.2 Steps involved in constructing machine using DAG
1. Rearranging the order:

81

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

T1:=A+B;

T2:=C+D;
T3:=E-T2;
T4:=T1-T3;

Called a heuristic ordering for DAG’S.

2. Optimal ordering of trees:

= The DAG representation of a quadruple is a tree and if should be in a designed
register.

» Using labeling algorithm- we can find the node and the leaf.

= Multi register and algebraic properties are made.

= Sub expressions are made i.e. partition of trees into sub trees.

9.7 Peephole Optimization

This optimization technique works locally on the source code to transform it into an
optimized code. By locally, we mean a small portion of the code block at hand. These
methods can be applied on intermediate codes as well as on target codes. A bunch of
statements is analyzed and are checked for the following possible optimization

9.7.1 Redundant Instruction Elimination
At source code level, the following can be done by the user:

int add_ten(int x) int add_ten(int x) int add_ten(int x) int add_ten(int x)
{ { { {

inty, z; inty; inty=10; return x + 10;

y =10; y = 10; return x +vy; }

Z=X+Yy,; y=X+y; }

return z; returny;

} }

At compilation level, the compiler searches for instructions redundant in nature.
Multiple loading and storing of instructions may carry the same meaning even if some of
them are removed. For example:

0 MOV x, RO
0 MOV RO, R1

We can delete the first instruction and re-write the sentence as:

MOV x, R1

9.7.2 Unreachable Code

Unreachable code is a part of the program code that is never accessed because of
programming constructs. Programmers may have accidently written a piece of code that
can never be reached.

Example:
void add_ten(int x)

82

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

{

return x + 10;

printf(“value of x is %d”, x);

H

In this code segment, the printf statement will never be executed, as the program control
returns back before it can execute, hence printf can be removed.

9.7.3 Flow of Control Optimization

There are instances in a code where the program control jumps back and forth without
performing any significant task. These jumps can be removed. Consider the following
chunk of code:

MOV R1, R2
GOTO L1

L1: GOTO L2

L2 : INCR1

In this code, label L1 can be removed, as it passes the control to L2. So instead of jumping
to L1 and then to L2, the control can directly reach L2, as shown below:

MOV R1, R2
GOTO L2
. L2 :INC R1

9.7.4 Algebraic Expression Simplification

There are occasions where algebraic expressions can be made simple. For example, the
expression a = a + 0 can be replaced by a itself and the expression a = a + 1 can simply be
replaced by INC a.

Strength Reduction

There are operations that consume more time and space. Their ‘strength’ can be
reduced by replacing them with other operations that consume less time and space, but
produce the same result.

For example, x * 2 can be replaced by x << 1, which involves only one left shift. Though
the output of a * a and a2 is same, a2 is much more efficient to implement.

Summary

e Code generation can be considered as the final phase of compilation.

e The output of the code generator is machine code.

e The address descriptor is used to track the location in the memory.

e DAG representation made the code generation simple.

e If the value of a name is found at more than one place, the register’s value will be
preferred over the cache and main memory.

e Redundancy in loads and stores are reduced in peephole optimization.

Question

1. Explain register descriptor and address descriptor.

2. Write note on GETREG ().

83

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

@

10.

11.

12.

13.

14.

15.

16.

Explain heuristic ordering with an example.
Explain Peephole optimization.

MULTIPLE CHOICE QUESTIONS

A e is a program that takes as input a program written in one language
(source language) and produces as output a program in another language (object
language).

aJtranslator b)assembler c)compiler d)interpreter Ans:a

If the source language is high-level language and the object language is a low-level
language(assembly or machine), then such a translator is called as a ------------- .

aJtranslator b)assembler c)compiler d)interpreter Ans:c
An interpreter is a program that directly executes an---------- code.
a)source b)object c)intermediate d)subject Ans:c

If the source language is an assembly language and the target language is a machine
language, then the translator is called an ----------------—- .

aJtranslator b)assembler c)compiler d)interpreter Ans:b
————————————— is used for translators that take programs in one high-level language into
equivalent programs in another high-level language.

a)Preprocessor b)Compiler c)Assembler d)Translator Ans:a
A macro is a ------------ replacement capability.

a)text b)image c)language d)none Ans:a
The two aspects of macros are ----------- and ------------- .

a)description, definition b)description, use

c) definition, use d) definition, function Ans:c

A compiler takes as input a source program and produces as output an equivalent
sequence of --------------— .

a) user program b)object language

c)machine instructions d)call Ans:c
The compilation process is partitioned into a series of sub processes called -------------
a)phases b)sub program c)module d)subsets Ans:a
The first phase of the compiler is also called as ------------ .

a)scanner b)parser c)tokens d)macro Ans:a
The output of the lexical analyzer are a stream of ------------ .

a)instructions b)tokens c)values d)inputs Ans:b
Tokens are grouped together into syntactic structure called as an ------------- .
ajexpression b)tokens c)instructions d)syntax Ans:a
Syntactic structure can be regarded as a tree whose leaves are the ------------ .
a)scanner b)parser c)tokens d)macro Ans:c
————————————— phase designed to improve the intermediate code.

a)Code optimization b) Code Generation

c) Intermediate code generator d) Syntax Analyzer Ans:a
Data structure used to record the information is called a --------- table.

a)syntactic b)symbol c)value d)tokens Ans:b

In an implementation of a compiler, portions of one or more phases are combined into
amodule called a -------- .
a)pass b) parser c)scanner d)set Ans:a

84

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

B e is a special kind of notation used to define the language.
a) Expression b) Proper Expression
¢) Irregular Expression d) Regular Expression Ans:d
The ---------—--- phase receives optimized intermediate codes and generates the code for
execution.
a)lexical analyzer b)syntax analyzer
c)code optimizer d)code generator Ans:d
A compiler may run on one machine and produce object code for another machine,

such a compiler is called a ------------- .

a) cross compiler b)medium compiler

¢) back compiler d)mixed compiler Ans:a
The main function of lexical analyzer is to read a -------------- .

a) source program b)object program

c)intermediate code d)sub Ans:a

One character is read at a time and translated into a sequence of primitive units called

a)instructions b)tokens c)values d)numbers Ans:b
Which is not a token?

a)operator b)instructions c)keywords d)identifier Ans:b
To recognize the tokens in the input stream-----------------—-—- and ------------ are

convenient ways of designing recognizers.

a) transition diagrams, finite automata

b) transaction diagram, finite automata

c) transition diagram, NFA

d) transaction diagram, NFA Ans:a
When the lexical analyzer and parser are in the same pass, the lexical analyzeracts as
a-----—- .

a)subroutine b)stack c)analyzer d)parser Ans:a

It is easy to specify the structure of tokens than the ------------ structure of the
program.

a)syntactic b)syntax c)both (a) and (b) d)main Ans:a
———————————— is used to define a language.

a) Lexical Analyzer b)Parser

c)Regular Expression d)Identifier Ans:c

A string is a finite sequence of ----------- .

a)symbols b)tokens c)instructions d) passes Ans:a
The concatenation of any string with an empty string is the ----------- .

a)string itself b)null c)symbol d)alphabet Ans:a
——————————————— is used to describe tokens and identifiers.

a) Lexical Analyzer b)Parser

c)Regular Expression d)Random Ans:c
The symbol table keeps account of the attributes of the --------------—-—- .

a) identifiers b)values c)numbers d)text Ans:a
A or finite automata for a language is a program that takes as input a
string x and answers ‘Yyes’ if x is a sentence of the language L ‘no’ otherwise.
ajrecognizer b)parser c)lexical analyzer d)identifier Ans:a

85

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

32. DFA stands for ---------------——-
a) Deterministic Finite set Automata b) Deterministic Finite Automata
c) Non Deterministic Finite Automata d) Non Deterministic Finite set Automata

Ans:b

33. NFA stands for ------------------

a) Deterministic Finite set Automata

b) Deterministic Finite Automata

c) Non Deterministic Finite Automata

d) Non Deterministic Finite set Automata Ans:c
34. A NFA should have --------------—--- start state.

a)l b)0 c)finite d)infinite Ans:a
35. The generalized transition diagram for a regular expression is called ------------- .

a) finite automaton b)infinite automaton

c)regular automaton c)irregular automaton Ans:a
36. - is a tool that automatically generating lexical analyzer.

a)LEX b)HEX c)SLR d)CLR Ans:a
37.LEX can build from its input, a lexical analyzer that behaves roughly like a ---------- .

a) Finite Automaton b)Deterministic Finite Automata

c)Non-Deterministic Finite Automata d)Finite Set Ans:a
38, - are used by lexical analyzers to recognize tokens.

a) Line Graphs b)Bar Charts

c)Transition Diagrams d)Circle Charts Ans:c
39. In CFG ,the basic symbols of the language are called ------------- .

ajterminals b)non-terminals c)symbols d)digits Ans:a
40. Tokens are ------------ .

ajterminals b)non-terminals c)symbols d)digits Ans:a
41. Special symbols and syntactic variables are -------------- .

ajterminals b)non-terminals c)symbols d)lines Ans:b
42. The symbol ==> means ---------------- .

a)derives in one step b)derives in zero or more steps

c) derives in one or more steps d)does not derive Ans:a
43. The symbol =*=> means ---------------- .

a)derives in one step b)derives in zero or more steps

c) derives in one or more steps d)does not derive Ans:b
44. The symbol =*=> means ---------------- .

a)derives in one step b)derives in zero or more steps

c) derives in one or more steps d) does not derive Ans:c

45. A graphical representation for derivations that filter out the choice regarding
replacement order is called the ------------——--- .
a) parse tree b) graph tree c)syntax tree d) symbol tree Ans:a

46. A parse tree consists of a finite set of labeled ---------- connected by ----------- .

a) nodes, edges b)edges, nodes

c)terminals, lines d)lines, terminals Ans:a
47. A parser for Grammar G is a program that takes as input string W and produces as

output is --------------- for W.

a) parse tree b) slr C) error message d) string Ans:a
48.If W is a sentence of G, or an ------------- indicating that W is not a sentence of G.

a) parse tree b) slr C) error message d) string Ans:c

86

49.

50.

S1.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61

62.

63.

64.

65.

66.

07.

68.

69.

Syntax Analyzer is also called as a

a) parser

a) leaves, root
c) none

In a top-down parser, the starting

string.

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

b) lexer

c) converter
Bottom-up parserbuild the parse trees from the bottom --
b) root, leaves

d) combination of leaves and root
In both parsing type ,the cases the input to the parser is being scanned from -----------
-, one symbol at a time.

a) left to right b) right to left

d) inverter
———————— to the top

c) middle of a string d) end

a) terminal Db) 3letter c) digit d) non-terminal
The bottom-up parsing method is called --------------- parsing.

a)shift reduce b) recursive decent c¢) bottom-up d) top-down
The top-down parsing is called ------------ parsing.

a)shift reduce b) recursive decent c¢) bottom-up d) top-down
An operator-precedence parser is one kind of ------------- parser.

a) shift reduce b) descent c)bottom-up d)top-down
Predictive parser is one kind of --------------- parser.

a)shift reduce b)recursive descent c)bottom-up d)top-down
The output of a parser is the representative of a --------------- .

a) parser tree b) slr C) error message d) tree
———————————— is a program that produces valid parse trees.

a)Reader b)Parser c)Writter d)Producer
A rightmost derivation in reverse is called as ----------- .

aJreduction b)sequence

c)reduction sequence d)canonical reduction sequence
Rightmost derivation is sometimes called ------------- derivations.
aJjcanonical b)RMD c)LMD d)low

a)Factoring

b)Right Factoring

R makes grammar suitable for parsing.

c) Left Factoring

Ans:a

is expanded to derive the given input

Ans:d

Ans:a

Ans:b

Ans:a

Ans:b

Ans:a

Ans:b

Ans:a

Ans:b

d) Reverse Factoring Ans:c

Left Factoring is a transformation for factoring out the ---- prefixes.
ajodd b)common c)positive d)negative
Reverse of a right most derivation is called ------------

ajreduction b)handle c)production d)base

The canonical reduction sequence is obtained by ------ .

ajreduction b)handle c)production
Which is not a shift reduce parser action
a)Shift b)Reduce c)Accept

Ans:b

Ans:b

d)handle pruning Ans:d

d)go

If a grammar has no two adjacent non-terminals ,then it is called as an

grammar.

a)precedence b)operator

The parsing table is generally a

Precedence table can be encoded by

a) one b) two
a) reduce b) shift
Stack is pushed with
a)$ b)%

c)regular

--------------- dimensional

c) three

———————————— functions.

c) precedence
symbol.

c)*

87

d)irregular
array.
d)four

d) various

d)&

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

70. LR Parser is a -------------- parser.

a)Bottom-Up b)Top-Down c)reverse d)forward Ans:a
71. LR parser construct a --------------—- type of derivation.

a)RMD b)MMD c)LMD d)CLR Ans:a
72. LR parser has ------------- components.

a)2 b)3 c)S d)1
73. What are the components of LR Parser?

a) Parsing algorithm b) Parsing table construction

c) both a and b d)Parsing note Ans:c
e function is a collection, called canonical collection of LR (0) items.

a) GOTO b) FIRST c) FOLLOW d) COMPUTE Ans:a
75. The collection of sets of LR (0) item is called ---------------- .

a)SLR b)CLR c)LALR d)DMR Ans:b
76. The SLR table has 2 parts they are ------- and ------------- .

a) action, goto entries b)action, error

c)error, shift d)action, shift Ans:a
77. The input string is in I/p buffer followed by the right end marker ---------------- .

a)$ b)% o)* d)& Ans:a
78. If Left Recursion is available------------ occurs.

a) stack b) cycle c) queue d) symbols Ans:b
79, - keeps the grammar symbols.

a)Top b) Stack c)Queue d)Bottom Ans:b
80. The ---------- keeps the input string.

a)input buffer b)output buffer c) stack d)queue Ans:a
81, ——-mm- directed translation allows subroutines or semantic actions to be attached

to the productions of a context free grammar.

a)syntax b)semantic c)both d)error Ans:a
82. Syntax directed translation subroutines generate --------------- code.

a)intermediate b)source c)object d)error Ans:a
83. A syntax directed translation scheme is merely a -------------- grammar.

aJregular b)context-sensitive c)context-free d)single Ans:c
84.The -----------—- action is enclosed in braces.

a)syntax b)semantic c)both d)error Ans:b
85. Implementation of syntax-directed translators describes an ------------ mapping.

a)input b)output c)input-output d)parse table Ans:c
86. A compiler — compiler would tie the parser and the semantic action program fragments

together, producing ----------- module.

ajone b)two c)three d)more than one Ans:a
87. —————mm-- polish places the operator at the right end.

a) Postfix b) Prefix c) Both d) Polish Ans:a
88. To evaluate the ------------—- expression, a stack is used.

a) postfix b) prefix c) both d) polish Ans:a
89. The general strategy is to scan the postfix code ------------- .

a)left-right b)right-left c)middle d)end Ans:a
90. If the attributes of the parent depend on the attributes of the children ,then they are

called as ------------- attributes.

a)made b)discovered c)new d) inherited Ans:d

88

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

91. - is a tree in which each leaf represents an operand and each interior node

an operator.

a) Parser Tree b)Semantic Tree c)Syntax Tree d)Structured Tree Ans:c
92. The properties of an entity are called as -------------- .

a)values b)attributes c)numbers d)digits Ans:b
93. Usually the “Three address code” contains address two for the ---------- and one for the

result.

a) operand b)operator c)result d) statement Ans:a
94. The ---------—-—--- statement is an abstract form of intermediate code.

a)2-address b)3-address c)Intermediatecode d)address Ans:b
95. Which is not the way of implement the 3-address statement.

a) Quadruples b) Triples c) Indirect Triples d) Parse Tree Ans:d
96. --------mmo——- record structure has 4 fields.

a) Quadruples b) Triples c) Indirect Triples d) Parse Tree Ans:a
97. Parenthesized numbers are used to represent ----------- into the triple structure.

a)pointer b)stack c)queue d)value Ans:a
98. - Triples are listing pointers to triples, rather than listing the triples

themselves.

a)Direct b)Indirect c)Multiple d)New Ans:b
99, refers to the location to store the value for a symbol.

a) value b)place c)code d)number Ans:b
100. -----mm-- refers to the expression or expressions in the form of three address codes.

a) value b)place c)code d)number Ans:c
101, ———----——-- is associating the attributes with the grammar symbols.

aJrotation b)translation c)transformation d)evolving Ans:b
102. In 3-address code for array reference we assume static allocation of arrays, where

subscripts range from 1 to some limit known at ------------------ time.

a) compile b) run c) execution d) process Ans:a
103. In Triples uses only 3 --------------—- .

a) fields b) operator c) operand d) instruction Ans:a
104. is used in the several stages of the compiler.

a)Table b) Symbol Table c) Records d) Program. Ans:b
105. Information about the name is entered into the symbol table during

and .

a) lexical and syntactic analysis b) lexical and code generation

c) lexical and error handler d) lexical and code optimization. Ans:a
106. Each entry in the symbol table is a pair of the form and

a) Name and information. b) Name and function.

c) Name and Data. d) Name and procedures. Ans:a

107. A compiler needs to collect and use information about the names appearing in the
source program. This information is entered into a data structure called a

a)Symbol Table b) Lexical analysis

c) Syntactic analysis d) Records. Ans:a
108. Undeclared name and type incompatibilities in

a)Syntactic errors b) Semantic errors

c) Lexical Phase errors d) Reporting errors. Ans:b

89

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

109. Minimum distance matching in

a)Syntactic errors b) Semantic errors

c) Lexical Phase errors d) Reporting errors Ans:a
110. Minimum distance correction is erTors.

a)Syntactic Phase errors b) Semantic errors

c) Lexical Phase errors d) Reporting errors. Ans:a
111. Parser discards input symbol until a token is encountered.

a)synchronizing b) Synchronizing

c) Group d) none. Ans:b
112. The message should not be redundant in

a) Syntactic Phase errors b) Semantic errors

c) Lexical Phase errors d) Reporting errors. Ans:d

113. When an error is detected the reaction of compiler is different,
a)A system crash
b)To emit invalid output
¢)To merely quit on the first detected error.

d)All of the above. Ans:d
114. Two types of data areas .

a)Common and stack b)Common and equivalence.

c)Register and stack d)Code and equivalence. Ans:b

115. Hashing meaning
a)Variation of searching techniques b)Variation of inserting techniques

c)Variation of updating techniques. d)Variation of Deleting Techniques. Ans:a
116. An describing the partition in storage to be allocated for the name.

a)Pointer b) AVAILABLE c) Offset d) Attributes. Ans:b
117. The simplest way to implement a symbol table is as a of records, one

record per name.

a)Linear array b) Multidimensional array

c) Rectangular array d) Jagged Array. Ans:a
118. What is the length of identifier for DIMPLE?

a)5 b) 6 c) 4 d) 3 Ans:b
119. The accurate term for “Code Optimization” is

a)Intermediate Code b) Code Improvement

c) Latter Optimization d) Local Optimization. Ans:b
120. The quality of the object program is generally measured by its

a)Cost b) Time

c) Size or Its running time d) Code Optimization. Ans:C
121. The code optimization techniques consist of detecting in the program and

these patterns.

a)Errors and replacing b) Patterns and replacing

c) Errors and editing d) Patterns and editing. Ans:b
122. may be local or global.

a)Code Optimization b) Variable

c) Sub expression d) Patterns. Ans:a
123. “90-10” rule states that of the time is spent in of the code.

a)90%, 20% b) 80%, 10% c) 90%, 10% d) 90%, 90%. Ans:a

90

124.

125.

126.

127.

128.

129.

130.

131.

132.

138.

134.

135.

136.

137.

138.

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

The important sources of optimization are the identification of common

a)Regular expression b) Sub expression

c) expression d) time. Ans:b

The term constant folding is used for the

a)Local optimization b) Code optimization

c) Latter optimization d) Loop optimization. Ans:c
performed within a straight line and no jump.

a)Local optimization b) Code optimization

c) Latter optimization d) Loop optimization. Ans:a

From anyone in the loop to any other, there is a path of length one or more is

a)Weakly Connected b) Unique Entity

¢) Multi Connected d) Strongly Connected. Ans:d

If some sequences of statements from arithmetic progressions, we say such
identifiers as .

a)Reduction b) Induction Variables

c) Code motion d) Inner Loops. Ans:b
The replacement of an expensive operation by a cheaper one is called

in strength

a) Reduction b) Induction Variables

c) Code motion d) Inner Loops. Ans:a

Full form of DAG

a)Dynamic acyclic graph b)Data acyclic graph

c)Directed acyclic graph d)Detecting acyclic graph. Ans:c

A useful data structure for automatically analyzing basic block is a

a)Dynamic acyclic grap b)Data acyclic graph

c)Directed acyclic graph d)Detecting acyclic graph. Ans:c

Constructing a DAG from is a good way of determining common

sub expression.

a)2 address statement b) 4 address statement

c) 3 address statement d) 5 address statement. Ans:c
are labeled by operator symbol.

a) Nodes b) Leaves c) Interior Nodes d) Root Ans:c

Computed results can be left in as long as possible.

a)Registers b) Triples c) Indirect Triples d) Quadruples. Ans:a

Initially the register descriptor shows that all registers as .

a)Full b) empty c) Half-filled d) None Ans:b

To keep track of the location is used.

a)Flag register b) Address descriptor

c) Allocation descriptor d) register. Ans:b
invoke a function GETREG ().

a)Code optimization b) Code motion

c) the code generation algorithm d) intermediate code. Ans:c

The DAG representation of a Quadruples is a .

a)Nodes b) Leaves c) Tree d) Pattern. Ans:c

91

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

139. Multiple jumps are reduced accordingly to

a)Local optimization. b) Code optimization

c) Peephole optimization d) Latter optimization Ans:c
140. Loads and stores are reduced in

a) optimization b)peephole optimization

c)latter optimization d)none Ans:b
Exercise

1. If Wis a string of terminals and A, b are two non-terminals, then which of the
following are right-linear grammars?

(@) A> Bw

(b) A> Bw|w

(c) A>wb|w

(d) None of the above

2. Ifa is aterminal and S, A, B are three non-terminals, then which of the following are
regular grammars?

@ s > E
A > aS|b
() A > aBja
B > DbA|b
(¢ A > Bal|Bab
(d A -> abB|aB

3. Representing the syntax by a grammar is advantageous because
(a) Itis concise

(b) It is accurate

(c) Automation becomes easy

(d) Intermediate code can generated easily and efficiently

4. CFG can be recognized by a

(a) Push-down automata

(b) 2-way linear bounded automata
(c) Finite state automata

(d) None of the above

5. CSG can be recognized by

(a) Push-down automata

(b) 2-way linear bounded automata
(c) Finite state automata

(d) None of the above.

6. Choose the correct statements.

(a) Sentence of a grammar is a sentential from without any terminals.

(b) Sentence of a grammar should be derivable from the start state.

(c) Sentence of a grammar should be frontier of a derivation tree, in which the node has
the start state as the label

(d) All of the above.

92

(b)

()
(d)

13.

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

A grammar can have

A non-terminal A that can’t derive any string of terminals.
A non-terminal A that can be present in any sentential from
E as the only symbol on the left hand side of a production
None of the above.

A top-down parser generates
Left-most derivation

Right-most derivation
Right-most derivation in reverse
Left-most derivation in reverse

A bottom-up parser generates
Left-most derivation

Right-most derivation
Right-most derivation in reverse
Left-most derivation in reverse

. A given grammar is said to be ambiguous if

Two or more productions have the same non-terminal on the left hand side.
A derivation tree has more than one associated sentence.

There is a sentence with more than one derivation tree corresponding to it
Parenthesis are not present in the grammar

.The grammar E -> E+E | E*E | a,is

Ambiguous

Unambiguous

Ambiguous or not depends on the given sentence
None of the above

. Choose the correct statement

Language corresponding to a given grammar, is the set of all strings that can be
generated by the given grammar.

A given language is ambiguous if no unambiguous grammar exist for it.

Two different grammars may generate the same language.

None of the above.

Consider the grammar

S > ABSc | Abc

BA
Bb
Ab
Aa

-> AB
- bb
-2 ab
- aa

Which of the following sentences can be derived by this grammar?

()
(b)
()
(d)

abc
aab
abcc
abbc

93

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

14. The language generated by the above grammar is the set of all strings made uo of a, b,
c, such that

(@) The number of a’s, b’s, and ¢’s will be equal

(b) a’s always precede b’s

(c) b’s always precede c’s

(d) The number of a’s b’s and c’s are same and the a’s precede b’s. Which precede c’s.

15. In an incompletely specified automata

(a) No edge should be labelled E

(b) From any given state, there can’t be token leading to two different states
(c) Some states have no transition on some tokens

(d) Start state may not be there

16. The main difference between a DFSA and an NDFSA is

(@) In DFSA, E transition may be present

(b) In NDFSA, E transition may be present

(c) In DFSA, from any given, there can’t be alphabet leading to two different states.

(d) In NDFSA, from any given state, there can’t be any alphabet leading to two different
states.

17. Two finite state machines are said to be equivalent if they
(a) Have the same number of stages

(b) Have same number of edges

(c) Have the same number states and edges

(d) Recognize the same set of tokens

18. Choose the correct answer.
FORTRAN is a

(a) Regular language

(b) Context-free language

(c) Context-sensitive language
(d) Turing language

19. If two finite states machine M and N isomorphic, then M can be transformed to N by
relabeling

(a) The states alone

(b) The edges alone

(c) Both the states and edges

(d) None of the above.

20. In a syntax directed translation scheme, if the value of an attribute of a node is a
function of the values of the attributes of its children, then it is called a

(a) Synthesized attribute

(b) Inherited attribute

(c) Canonical attribute

(d) None of the above.

94

23.

()
(b)
()
(d)

24.

()
(b)

()
(d)

25.

()
(b)
()
(d)

26.

()
(b)
()
(d)

27.

()
(b)
()
(d)

28
()
(b)
()
(d)

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

. Synthesized attribute can easily be simulated by an
LL grammar
Ambiguous grammar
LR grammar
None of the above

. For which of the following situations, inherited attribute is a natural choice?
Evaluation of arithmetic expressions
Keeping track of variable declaration
Checking for the correct use of L-values and R-values
All of the above.

The graph depicting the inter-dependencies of the attributes of different nodes in a
parse tree is called a

Flow graph

Dependency graph

Karnaugh’s graph

Steffi graph

Choose the correct statements.

Topological sort can be used to obtain an evaluation order of a dependency graph.
Evaluation order for a dependency graph dictates the order in which the semantic
rules are done.

Code generation depends on the order in which semantic actions are performed.
Only(a) and (c) correct.

A syntax tree

Is another name for a parser tree

Is a condensed form of parse tree
Should not have keywords as leaves
None of the above.

Syntax directed translation scheme desirable because
It is based on the syntax

Its description is independent of any implementation
It is easy to modify

Only (a) and (c) are correct.

Which of the following is not an intermediate code form?
Postfix notation

Syntax trees

Three address codes

Quadruples.

. Three address codes can be implemented by
Indirect triples
Direct triples
Quadruples
None of the above.

95

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

29.

(2)
(b)
()
(d)

30.

()
(b)
(c)
(d)

31.

()
(b)
()
(d)

32.

()
(b)
()
(d)

33.

()
(b)
()
(d)

Three address code involves
Exactly 3 addresses

At the most 3 addresses

No unary operator

None of the above.

Symbol table can be used for
Checking type compatibility
Suppressing duplicate error messages
Storage allocation
None of the above.

The best way to compare the different implementation of symbol table is to compare
the time required to

Add a new name

Make an inquiry

Add a new name and make an inquiry

None of the above.

Which of the following symbol table implementation is based on the property of locality
of reference?

Linear list

Search tree

Hash table

self-organization list

which of the following symbol table implementation is best suited if access time to be
minimum?

Linear list

Search tree

Hash table

self-organization list

. which of the following symbol table implementation, makes efficient use of memory?

List

Search tree

Hash table
Self-organizing list.

. Access time of the symbol table will be logarithmic, it is implemented by a

Linear list

Search tree

Hash table
Self-organizing list.

. An ideal compiler should

Detect error

Detect and report error

Detect, report and correct error
None of the above.

96

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

. Which of the following is not a source error?

Faulty design specification
Faulty algorithm

Compiler themselves

None of the above

. Any transcription error can be repaired by

Insertion alone

Deletion alone

Insertion and deletion alone
Replacement alone.

. Hamming distance is a

Theoretical way of measuring errors

Technique for assigning codes to a set of items known to occur with a given probability
Technique for optimizing the intermediate code

None of the above

. Error repair may

Increase the number of errors
Generate spurious error messages
Mask subsequent error

None of the above

. A parser with the valid prefix property is advantageous because

It detects error as soon as possible

It detects errors as and when they occur

It limits the amount of erroneous output passed to the next phase
All of the above.

. The advantages of panic mode of error recovery is that

It is simple to implement

It is very effective

It never gets into an infinite loop
None of the above.

. To recover from an error, the operator precedence parser may

Insert symbols onto the stack
Insert symbols onto the input
Delete symbols from the stack
Delete symbols from the input.

. Which of the following optimization techniques are typically applied on loops?

Removal of invariant computation
Elimination of induction variables
Peephole optimization
Invariant computation

97

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

59.

The technique of replacing run time computation by compile time computations is
called
Constant folding
Code hoisting
Peephole optimization
Invariant computation

. The graph that shows the basic blocks and their successor relationship is called.

Control graph
Flow graph

DAG

Hamiltonian graph

. Reduction in strength means

Replacing run computation by compile

Removing loop invariant computation

Removing common sub-expression

Replacing a costly operation by a relatively cheaper one

. A basic block can be analysed by a

DAG

Graph which may involve cycles
Flow-graph

None of the above

ud-chaining is useful for
Determining whether a particular definition is used anywhere or not
Constant folding
Checking whether a variable is used, without prior assignment
None of the above

. Which of the following concepts can be used to identify loops?

Dominators
Reducible graphs
Depth first ordering
None of the above

. Which of the following concepts are not loop optimization tecniques?

Jamming

Unrolling

Induction variable elimination
None of the above

. Running time of a program depends on the

Way the registers are used

Order in which computations are performed
Way the addressing modes are used

Usage of machine idioms

98

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

. du-chaining

Stands for use definition chaining

Is useful for copy propagation removal
Is useful for induction variable removal
None of the above

Which of the following comments about peep-hole optimization are true?
It is applied to a small part of the code.
It can be used to optimize intermediate code
To get the best out of this technique, it has to be applied repeatedly.
It can be applied to a portion of the code that is not contiguous.

. Shift-reduce parsers are

Top-down parsers

Bottom-up parsers

May be top-down or bottom-up parsers
None of the above

99

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

(1]
2]

3]

[4]
(5]

(6]
[7]
(8]

(9]
[10]
[11]
[12]

[13]
[14]

REFERENCES

Alfred V. Aho and Jeffrey D. Ullman, “Principles of Compiler Design”, 1989.

Y.N. Srikant and Priti Shankar, “The Compiler Design Handbook: Optimizations and
Machine Code Generation, Second Edition”, Dec 7, 2007.

Adesh K.Pandey,” Concepts of compiler Design”, S.K.Kataria and ons publisher of
India Books, India

Reinhard Wilhelm & Dieter Maurer,” Compiler Design”, Addion-Wesley, I edition
Gajendra Sharma,” Compiler Design”, S.K.Kataria and ons publisher of India Books,
India

K.Muneewaran,” Compiler Design”, Oxford University Press, 2012
K.Krishnakumari,”Compiler Design”, ARS Publications,2013

A.A Puntambekar, “Compiler Design(Principles of Compiler Design), Technical
Publications, 2013

Steven S.Muchnick,” Advanced Compiler Design Implementation”, Morgan Kaufman
Publisher,2012

Alexander Meduna,”Elements of Compiler Design”, Auerbach Publication, 2009.
G.Sudha Sadasivam,”Compiler Design”, Scitech Publication, 2009.

P.Kalaiselvi, AAR Senthilkumaar,”Principles of Compiler Deign”,Charulatha
Publications,2013.

https:/ /www.tutorialspoint.com/compiler_design/

http:/ /www.dreamincode.net/forums/topic/260592-an-introduction-to-compiler-
design-part-i-lexical-analysis/

100

https://www.tutorialspoint.com/compiler_design/
http://www.dreamincode.net/forums/topic/260592-an-introduction-to-compiler-design-part-i-lexical-analysis/
http://www.dreamincode.net/forums/topic/260592-an-introduction-to-compiler-design-part-i-lexical-analysis/
https://www.researchgate.net/publication/316560026

