
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/316560026

COMPILER DESIGN CONCEPTS, WORKED OUT EXAMPLES AND MCQS FOR

NET/SET

Book · March 2017

CITATIONS

0
READS

3,462

2 authors:

Some of the authors of this publication are also working on these related projects:

An Efficient Cloud Storage View project

Annal Ezhil Selvi S

Bishop Heber College

12 PUBLICATIONS 5 CITATIONS

SEE PROFILE

J . Persis Jessintha

Bishop Heber College

6 PUBLICATIONS 0 CITATIONS

SEE PROFILE

All content following this page was uploaded by Annal Ezhil Selvi S on 16 February 2018.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/316560026_COMPILER_DESIGN_CONCEPTS_WORKED_OUT_EXAMPLES_AND_MCQS_FOR_NETSET?enrichId=rgreq-118ba17a9c91dd93933a56d2e9ac0aff-XXX&enrichSource=Y292ZXJQYWdlOzMxNjU2MDAyNjtBUzo1OTQ2NjY2Njc5MjE0MDhAMTUxODc5MDk5MDE1OA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/316560026_COMPILER_DESIGN_CONCEPTS_WORKED_OUT_EXAMPLES_AND_MCQS_FOR_NETSET?enrichId=rgreq-118ba17a9c91dd93933a56d2e9ac0aff-XXX&enrichSource=Y292ZXJQYWdlOzMxNjU2MDAyNjtBUzo1OTQ2NjY2Njc5MjE0MDhAMTUxODc5MDk5MDE1OA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/An-Efficient-Cloud-Storage?enrichId=rgreq-118ba17a9c91dd93933a56d2e9ac0aff-XXX&enrichSource=Y292ZXJQYWdlOzMxNjU2MDAyNjtBUzo1OTQ2NjY2Njc5MjE0MDhAMTUxODc5MDk5MDE1OA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-118ba17a9c91dd93933a56d2e9ac0aff-XXX&enrichSource=Y292ZXJQYWdlOzMxNjU2MDAyNjtBUzo1OTQ2NjY2Njc5MjE0MDhAMTUxODc5MDk5MDE1OA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Annal_Ezhil_Selvi_S?enrichId=rgreq-118ba17a9c91dd93933a56d2e9ac0aff-XXX&enrichSource=Y292ZXJQYWdlOzMxNjU2MDAyNjtBUzo1OTQ2NjY2Njc5MjE0MDhAMTUxODc5MDk5MDE1OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Annal_Ezhil_Selvi_S?enrichId=rgreq-118ba17a9c91dd93933a56d2e9ac0aff-XXX&enrichSource=Y292ZXJQYWdlOzMxNjU2MDAyNjtBUzo1OTQ2NjY2Njc5MjE0MDhAMTUxODc5MDk5MDE1OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Bishop_Heber_College?enrichId=rgreq-118ba17a9c91dd93933a56d2e9ac0aff-XXX&enrichSource=Y292ZXJQYWdlOzMxNjU2MDAyNjtBUzo1OTQ2NjY2Njc5MjE0MDhAMTUxODc5MDk5MDE1OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Annal_Ezhil_Selvi_S?enrichId=rgreq-118ba17a9c91dd93933a56d2e9ac0aff-XXX&enrichSource=Y292ZXJQYWdlOzMxNjU2MDAyNjtBUzo1OTQ2NjY2Njc5MjE0MDhAMTUxODc5MDk5MDE1OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/J_Persis_Jessintha?enrichId=rgreq-118ba17a9c91dd93933a56d2e9ac0aff-XXX&enrichSource=Y292ZXJQYWdlOzMxNjU2MDAyNjtBUzo1OTQ2NjY2Njc5MjE0MDhAMTUxODc5MDk5MDE1OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/J_Persis_Jessintha?enrichId=rgreq-118ba17a9c91dd93933a56d2e9ac0aff-XXX&enrichSource=Y292ZXJQYWdlOzMxNjU2MDAyNjtBUzo1OTQ2NjY2Njc5MjE0MDhAMTUxODc5MDk5MDE1OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Bishop_Heber_College?enrichId=rgreq-118ba17a9c91dd93933a56d2e9ac0aff-XXX&enrichSource=Y292ZXJQYWdlOzMxNjU2MDAyNjtBUzo1OTQ2NjY2Njc5MjE0MDhAMTUxODc5MDk5MDE1OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/J_Persis_Jessintha?enrichId=rgreq-118ba17a9c91dd93933a56d2e9ac0aff-XXX&enrichSource=Y292ZXJQYWdlOzMxNjU2MDAyNjtBUzo1OTQ2NjY2Njc5MjE0MDhAMTUxODc5MDk5MDE1OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Annal_Ezhil_Selvi_S?enrichId=rgreq-118ba17a9c91dd93933a56d2e9ac0aff-XXX&enrichSource=Y292ZXJQYWdlOzMxNjU2MDAyNjtBUzo1OTQ2NjY2Njc5MjE0MDhAMTUxODc5MDk5MDE1OA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

1

INTRODUCTION TO COMPILER

 Computers are a balanced mix of software and hardware. Hardware is just a piece of

mechanical device and its functions are being controlled by a compatible software.

Hardware understands instructions in the form of electronic charge, which is the

counterpart of binary language in software programming. Binary language has only two

alphabets, 0 and 1. To instruct the machine, the hardware codes must be written in

binary format, which is simply a series of 1s and 0s. It would be a difficult and

cumbersome task for computer programmers to write such codes that is why we have

compilers to write such codes.

1.1 Language Processing System

 We have learnt that any computer system is made of hardware and software. The

hardware understands a language, which humans cannot understand. So we write

programs in high-level language, which is easier for us to understand and remember.

These programs are then fed into a series of tools and OS components to get the desired

code that can be used by the machine. This is known as Language Processing System.

Figure 1.1 Language Processing System

 The high-level language is converted into binary language in various phases. A

compiler is a program that converts high-level language to assembly language. Similarly,

an assembler is a program that converts the assembly language to machine-level

language.

Let us first understand how a program, using C compiler, is executed on a host machine.

 User writes a program in C language (high-level language).

 The C compiler compiles the program and translates it to assembly program (low-level

language).

 An assembler then translates the assembly program into machine code (object code).

 A linker tool is used to link all the parts of the program together for execution

(executable machine code).

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

2

 A loader loads all of them into memory and then the program is executed.

 Before diving straight into the concepts of compilers, we should understand a few

other tools that work closely with compilers.

1.1.1. Preprocessor

 A preprocessor, generally considered as a part of compiler, is a tool that produces

input for compilers. It deals with macro-processing, augmentation, file inclusion, language

extension, etc.

1.1.2. Interpreter

 An interpreter, like a compiler, translates high-level language into low-level machine

language. The difference lies in the way they read the source code or input. A compiler

reads the whole source code at once, creates tokens, checks semantics, generates

intermediate code, executes the whole program and may involve many passes. In contrast,

an interpreter reads a statement from the input, converts it to an intermediate code,

executes it, then takes the next statement in sequence. If an error occurs, an interpreter

stops execution and reports it; whereas a compiler reads the whole program even if it

encounters several errors.

1.1.3. Assembler

 An assembler translates assembly language programs into machine code. The output

of an assembler is called an object file, which contains a combination of machine

instructions as well as the data required to place these instructions in memory.

1.1.4 Linker

 Linker is a computer program that links and merges various object files together in

order to make an executable file. All these files might have been compiled by separate

assemblers. The major task of a linker is to search and locate referenced module/routines

in a program and to determine the memory location where these codes will be loaded,

making the program instruction to have absolute references.

1.1.5 Loader: Loader is a part of operating system and is responsible for loading

executable files into memory and execute them. It calculates the size of a program

(instructions and data) and creates memory space for it. It initializes various registers to

initiate execution.

1.2. Cross-Compiler

 A compiler that runs on platform and is capable of generating executable code for

platform is called a cross-compiler.

1.3. Source-to-source Compiler

 A compiler that takes the source code of one programming language and translates it

into the source code of another programming language is called a source-to-source

compiler.

1.3.1. Compiler – writing – tools

 Number of tools has been developed in helping to construct compilers. Tools range

from scanner and parser generators to complex systems, called compiler-compilers,

compiler-generators or translator-writing systems.

The input specification for these systems may contain:

1. A description of the lexical and syntactic structure of the source languages.

2. A description of what output is to be generated for each source language construct.

3. A description of the target machine.

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

3

The principle aids provided by the compiler-compilers are:

1. For Scanner Generator the Regular Expression is being used.

2. For Parser Generator the Context Free Grammars are used.

1.4 Bootstrapping

A compiler is characterized by three languages:

1. source language

2. object language

3. The language in which it is written.

1.4.1 How the First Compiler compiled?

1. We have new language L, needed for several machines A, B.

 First small compiler is written for machine A, . That small compiler, translates

a subset of language L into machine or assembler code for A.

2. Write compiler in the simple language S. When this program run

through becomes .

ie. Complete language L on machine A a produce object code for A.

Similarlyfor B

 ie. into using to produce …..

For machine A a small compiler that translates a subset S of language L into the

machine or assemble code of A.

For Machine B:

1.5 Compiler Architecture

 A compiler can broadly be divided into two phases based on the way they compile.

1.5.1 Analysis Phase

 Analysis phase is known as the front-end of the compiler, this phase of the compiler

reads the source program, divides it into core parts, and then checks for lexical, grammar,

and syntax errors. The analysis phase generates an intermediate representation of the

source program and symbol table, which should be fed to the Synthesis phase as input.

Figure 1.2 Working Principle of Compiler

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

4

1.5.2 Synthesis Phase

 Synthesis phase is known as the back-end of the compiler, this phase generates the

target program with the help of intermediate source code representation and symbol table.

A compiler can have many phases and passes.

 Pass: A pass refers to the traversal of a compiler through the entire program.

 Phase: A phase of a compiler is a distinguishable stage, which takes input from the

previous stage, processes and yields output that can be used as input for the next

stage. A pass can have more than one phase.

Phases v/s Passes:

 Phases of a compiler are sub tasks that must be performed to complete the

compilation process. Passes refers to the number of times the compiler has to traverse

through the entire program.

1.6 Phases of Compiler

 The compilation process is a sequence of various phases. Each phase takes input from

its previous stage, has its own representation of source program, and feeds its output to

the next phase of the compiler. Let us understand the phases of a compiler.

Figure 1.3 Architecture of the Compiler

1.6.1 Lexical Analysis

 The first phase of compiler is also known as Scanner. The scanner works as a text

scanner. This phase scans the source code as a stream of characters and converts it into

meaningful lexemes. Lexical analyzer represents these lexemes in the form of tokens as:

<Token-name, attribute-value>

1.6.2 Syntax Analysis

 The next phase is called the Syntax Analysis or Parser. It takes the token produced by

lexical analysis, as input and generates a parse tree (or syntax tree). In this phase, token

arrangements are checked against the source code grammar, i.e., the parser checks if the

expression made by the tokens is syntactically correct or not.

1.6.3 Semantic Analysis

 Semantic analysis checks whether the parse tree constructed thus follows the rules of

language. For example, it checks type casting, type conversions issues and so on. Also,

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

5

the semantic analyzer keeps track of identifiers, their types and expressions; whether

identifiers are declared before use or not, etc. The semantic analyzer produces an

annotated syntax tree as an output.

1.6.4 Intermediate Code Generation

 After semantic analysis, the compiler generates an intermediate code of the source

code for the target machine. It represents a program for some abstract machine. It is in

between the high-level language and the machine language. This intermediate code should

be generated in such a way that it makes it easier to be translated into the target machine

code. The intermediate code may be a Three Address code or Assembly code.

1.6.5 Code Optimization

 The next phase does code optimization, it is an optional phase. Optimization can be

assumed as something that removes unnecessary code lines, and arranges the sequence

of statements in order to speed up the program execution without wasting resources like

CPU, memory. The output of this phase is an optimized intermediate code.

1.6.6 Code Generation

 In this phase, the code generator takes the optimized representation of the

intermediate code and maps it to the target machine language. The code generator

translates the intermediate code into a sequence of re-locatable machine code. Sequence

of instructions of machine code performs the task as the intermediate code would do.

1.6.7 Symbol Table

 Symbol Table is also known as Book Keeping. It is a data-structure maintained

throughout all the phases of a compiler. All the identifiers‟ names along with their

information like type, size, etc., are stored here. The symbol table makes it easier for the

compiler to quickly search and retrieve the identifier‟s record. The symbol table is also

used for scope management.

1.6.8 Error Hander

 A parser should be able to detect and report any error in the program. It is expected

that when an error is encountered, the parser should be able to handle it and do parsing

with the rest of the inputs. Mostly it is expected from the parser to check for errors. But

errors may be encountered at various stages of the compilation process.

Summary

 A compiler is a program that converts high-level language to assembly language.

 A linker tool is used to link all the parts of the program together for execution.

 A loader loads all of them into memory and then the program is executed.

 A compiler that runs on machine and produces executable code for another machine is

called a cross-compiler.

 A Compiler divided into two parts namely Analysis and Synthesis.

 The compilation process is done in various phases.

 Two or more phases can be combined to form a pass.

 A parser should be able to detect and report any error in the program.

Questions

1. Write a short note on Compiler Writing tools.

2. Differentiate Linker and Loader

3. Explain Bootstrapping.

4. Differentiate Analysis phase and Synthesis phase.

5. Describe the phases of the Compiler.

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

6

LEXICAL ANALYSIS

2.1. Introduction

 Lexical analysis is the first phase of a compiler. It takes the modified source code from

language preprocessors that are written in the form of sentences. The lexical analyzer

breaks these sentences into a series of tokens, by removing any whitespace or comments

in the source code. If the lexical analyzer finds a token as invalid, it generates an error.

The lexical analyzer works closely with the syntax analyzer. It reads character streams

from the source code, checks for legal tokens, and passes the data to the syntax analyzer

when it demands.

Figure 2.1 Working principle of Lexical Analyser

2.2 Tokens

 Lexemes are said to be a sequence of characters (alphanumeric) which is also called as

tokens. There are some predefined rules for every lexeme to be identified as a valid token.

These rules are defined by grammar rules, by means of a pattern. A pattern explains what

can be a token, and these patterns are defined by means of regular expressions.

 In programming language, keywords, constants, identifiers, strings, numbers,

operators, and punctuations symbols can be considered as tokens.

For example, in C language, the variable declaration line

 int value = 100;

Contains the tokens:

1) int (keyword)

2) value (identifier)

3) = (operator)

4) 100 (constant)

5) ; (symbol)

2.2.1 Specifications of Tokens

 Let us understand how the language theory considers the following terms:

2.2.1.1 Alphabets

 Any finite set of symbols {0,1} is a set of binary alphabets,

{0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F} is a set of Hexadecimal alphabets, {a-z, A-Z} is a set of

English language alphabets.

2.2.1.2 Strings

 Any finite sequence of alphabets is called a string. Length of the string is the total

number of alphabets in the string, e.g., the string S is “INDIA”, the length of the string, S

is 5 and is denoted by |S|= 5. A string having no alphabets, i.e. a string of zero length is

known as an empty string and is denoted by ε (epsilon).

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

7

2.2.1.3 Special Symbols

A typical high-level language contains the following symbols:-

Symbols Purpose

Addition(+), Subtraction(-), Modulo(%), Multiplication(*) and

Division(/)

 Arithmetic

Operator

Comma(,), Semicolon(;), Dot(.), Arrow(->) Punctuation

 = , +=, /=, *=, -= Assignment

 ==, !=, <, <=, >, >= Comparison

Preprocessor

& Location Specifier

&, &&, |, ||, ! Logical

>>, >>>, <<, <<< Shift Operator

2.3 Language

 A language is considered as a finite set of strings over some finite set of alphabets.

Computer languages are considered as finite sets, and mathematically set operations can

be performed on them. Finite languages can be described by means of regular

expressions.

2.4 The role of Lexical Analysis

1. It could be a separate pass, placing its output on an intermediate file from which the

parser would then take its input.

2. The lexical analyzer and parser are together in the same pass; the lexical analyzer acts

as a subroutine or co routine, which is called by the parser whenever it needs new

token.

3. Eliminates the need for the intermediate file.

4. Returns a representation for the token it has found to the parser.

Example:

 a (op) b

 i. Treats the op as the token.

 ii. Checks whether the operator found is +, -, *, &,etc…

2.4.1 The need for lexical analysis

 The purpose of splitting the analysis into lexical analysis and syntactic analysis are,

 To simplify the overall design.

 To specify the structure of tokens that is the syntactic structure of the program easily.

 To construct more efficient recognizer for tokens than for syntactic structure.

2.4.2 Input Buffering

 The lexical analyzer scans the characters of the source program one at a time to

discover token.

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

8

Figure 2.2 Input Buffering

Eg:

 {

 int a, b, c;

 c = a+b;

 }

2.4.3 Preliminary Scanning

 There are certain process that are best performed as characters are moved from the

source file to the buffer. For example delete comments, ignore blanks, etc… All these

processes may be carried out with an extra buffer.

2.5 Regular Expressions

 The lexical analyzer needs to scan and identify only a finite set of valid

string/token/lexeme that belong to the language in hand. It searches for the pattern

defined by the language rules. Regular expressions have the capability to express finite

languages by defining a pattern for finite strings of symbols. The grammar defined by

regular expressions is known as Regular Grammar. The language defined by regular

grammar is known as Regular Language.

 Regular expression is an important notation for specifying patterns. Each pattern

matches a set of strings, so regular expressions serve as names for a set of strings.

Programming language tokens can be described by regular languages. The specification of

regular expressions is an example of a recursive definition. Regular languages are easy to

understand and have efficient implementation.

 There are a number of algebraic laws that are obeyed by regular expressions, which

can be used to manipulate regular expressions into equivalent forms.

2.5.1 Operations

The various operations on languages are:

1. Union of two languages L and M is written as L U M = {s | s is in L or s is in M}

2. Concatenation of two languages L and M is written as LM = {st | s is in L and t is in M}

3. The Kleene Closure of a language L is written as L* = Zero or more occurrence of

 language L.

2.5.2 Notations

If r and s are regular expressions denoting the languages L(r) and L(s), then

 Union : (r)|(s) is a regular expression denoting L(r) U L(s)

 Concatenation : (r)(s) is a regular expression denoting L(r)L(s)

 Kleene closure : (r)* is a regular expression denoting (L(r))*

Note: (r) is a regular expression denoting L(r)

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

9

2.5.3 Precedence and Associativity

a) (Closure), concatenation (.), and | (pipe sign) are left associative

b) has the highest precedence

c) Concatenation (.) has the second highest precedence.

d) | (pipe sign) has the lowest precedence of all.

For any regular expressions R, S & T the following axioms hold:

i. R|S = S|R (| is commutative)

ii. R | (S|T) = (R|S) | T (| is associative)

iii. R(ST) = (RS)T (is associative)

iv. R(S | T) = RS | RT & (S | T)R = SR | TR (is distributive over |).

v. R = R = R (is the identity for concentration).

2.5.4 Representing valid tokens of a language in regular expression

If X is a regular expression, then:

1) X* means zero or more occurrence of x. i.e., it can generate { e, x, xx, xxx, xxxx, … }

2) X+ means one or more occurrence of X. i.e., it can generate { x, xx, xxx, xxxx … } or x.x*

3) x? Means at most one occurrence of x.

4) [a-z] is all lower-case alphabets of English language. [A-Z] is all upper-case alphabets

of English language. [0-9] is all natural digits used in mathematics.

2.5.4.1 Representing occurrence of symbols using regular expressions

a) Letter = [a – z] or [A – Z].

b) Digit = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 or [0-9] sign = [+ | -].

2.5.4.2 Representing language tokens using regular expressions
1) Decimal = (sign)?(digit)+

2) Identifier = (letter)(letter | digit)*

 The only problem left with the lexical analyzer is how to verify the validity of a regular

expression used in specifying the patterns of keywords of a language. A well-accepted

solution is to use finite automata for verification.

2.6 Finite Automata

 Finite automata is a state machine that takes a string of symbols as input and

changes its state accordingly. Finite automata is a recognized for regular expressions.

When a regular expression string is fed into finite automata, it changes its state for each

literal. If the input string is successfully processed and the automata reaches its final

state, it is accepted, i.e., the string just fed was said to be a valid token of the language in

hand.

 A recognizer/finite automata for a language is a program that takes as input a string x

and answers „yes‟ if x is a sentence of the language L „no‟ otherwise.

Figure 2.3 Finite Automaton

Types:

1. Non Deterministic Finite Automata (NFA)

2. Deterministic Finite Automata (DFA)

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

10

The mathematical model of finite automata consists of:

1. Finite set of states (Q)

2. Finite set of input symbols (Σ)

3. One Start state (q0)

4. Set of final states (qf)

5. Transition function (δ)

The transition function (δ) maps the finite set of state (Q) to a finite set of input symbols

(Σ), Q × Σ ➔ Q

2.6.1 NFA Construction

Let L(r) be a regular language recognized by some finite automata (FA).

1) States: States of FA are represented by circles. State names are written inside circles.

2) Start states: The state from where the automata starts is known as the start state.

Start state has an arrow pointed towards it.

3) Intermediate states: All intermediate states have at least two arrows; one pointing to

and another pointing out from them.

4) Final state: If the input string is successfully parsed, the automata is expected to be in

this state. Final state is represented by double circles. It may have any odd number of

arrows pointing to it and even number of arrows pointing out from it. The number of

odd arrows are one greater than even, i.e. odd = even+1.

5) Transition: The transition from one state to another state happens when a desired

symbol in the input is found. Upon transition, automata can either move to the next

state or stay in the same state. Movement from one state to another is shown as a

directed arrow, where the arrows point to the destination state. If automata stays on

the same state, an arrow pointing from a state to itself is drawn.

Example 1: We assume FA accepts any three digit binary value ending in digit 1.

 FA = {Q(q0, qf), Σ(0,1), q0, qf, δ}

Example 2:

Regular Expression R= (a|b)*abb (FA accepts the string which is ending with abb)

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

11

 The transitions of an NFA can be conveniently represented in tabular form by means of

a transition table.

Example 3: R= aa* | bb*

2.6.2 DFA Construction

 A DFA is a special case of a NFA in which,

1) No state has an based { } transition on input

2) For each state S and input symbol „a‟, there is at most one edge labeled „a‟ leaving S.

For an Example:

 Given Regular Expression: R= (a|b)*abb

NFA for given regular expression R is,

2.6.2.1 Constructing DFA from NFA:

Figure 2.4 Regular Expression to Reduced DFA

An Algorithm for converting a DFA from a NFA:

Input : An NFA N.

Output : A DFA D accepting the same language.

Method :

State Input(a) Symbol(b)

0 {0, 1} {0}

1 - {2}

2 - {3}

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

12

 Each state D is a set of state which N could be in after reading some sequence of input

symbols. Thus D is able to simulate in parallel all possible moves N can make on a given

input string.

 Let us define the function - closure(s) to be the set of states of N built by applying the

following rules:

1) S is added to -closure(s).

2) If t is in -closure(s) and there is an edge labeled from t to u, repeated until no more

states can be added to -closure(s).

Example: 1

 Regular Expression R = (a|b)*abb

Solution:

 E-closure(0) = {0, 1, 2, 4, 7} = A

 Move(A,a) = {3, 8} 2 reads „a‟ goes to 3 & 8

 Move(A, b) = {5}

 E-closure(Move(A,a)) = {3, 6, 1, 2, 4, 7, 8}

 Ie. {3, 8} = {1, 2, 3, 4, 6, 7, 8} = B

 E-closure(Move(A, b)) = {5, 6, 1, 2, 4, 5, 7}

 Ie. {5} = {1, 2, 4, 5, 6, 7} = C

Move (B, a) = {3, 8}

Move (B, b) = {5, 9}

Move (C, a) = {3, 8}

Move (C, b) = {5}

E-closure (Move (B, a)) = {1, 2, 3, 4, 6, 7, 8} = B

 {3, 8}

E-closure (Move (B, b)) = {1, 2, 4, 5, 6, 7, 9} = D

 {5, 9}

E-closure (Move (C, a)) = {1, 2, 3, 4, 6, 7, 8} = B

 {3, 8}

E-closure (Move (C, b)) = {1, 2, 4, 5, 6, 7} = C

 {5}

Move (D, a) = {3, 8}

Move (D, b) = {5, 10}

E-closure(Move(D, a)) = {1, 2, 3, 4, 6, 7, 8} = B

 {3, 8}

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

13

E-closure(Move(D, b)) = {1, 2, 4, 5, 6, 7, 10} = E

 {5, 10}

Move (E, a) = {3, 8}

Move (E, b) = {5}

E-closure(Move(E, a)) = B

 {3, 8}

E-closure(Move(E, b)) = C

 {5}

Transition table:

States Input System

a b

A B C

B B D

C B C

D B E

E B C

DFA:

Minimizing DFA:

 = {A, B, C, D, E}

 new = {A, B, C, D} {E}

 = new

 = {A, B, C, D} {E}

 new = {E} {A, B, C} {D} =

 = {E} {D} {A, C} {B}

Transition table:

States Input System

a b

A B A

B B D

D B E

E B A

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

14

2.7 Implementation of a lexical analyzer

 LEX is a tool which automatically generating lexical analyzer for a language L.

2.7.1 Implementation

 LEX can build from its input, a lexical analyzer that behaves roughly like a finite

automaton

 The idea is to construct a NFA „N‟ for each token pattern P in the translation rules.

 Constructing an NFA from a regular expression and then link these NFA‟s together

with a new start state.

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

15

2.7.2 Translation Rules

 Empty strings are omitted.

 String divided based on delimiters such as |, (and) operators.

 Example:

 Regular expression r = a | abb | a* b+

The above regular expression divided into 3 parts for an implementation of FA then they

are connected with a single start state.

 a {} //are omitted here

 abb {}

 a*b+ {}

Summary

 Lexical Analyzer is also known as Scanner.

 Lexical Analyzer and parser can be in same pass.

 Lexical Analysis simplifies the overall design.

 Preliminary scanning is also done in the first phase.

 Extra Buffering is needed for preliminary scanning.

 LEX is the tool to construct lexical analyzer.

 The output of lexical analyzer is a stream of tokens.

 Finite Automata is also called recognizer.

 Regular expressions is needed to define the tokens.

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

16

Questions

1. Explain the need and role of the lexical analyzer.

2. Describe regular expressions.

3. Construct an NFA for (i) R=(a/b)* a (a/b)

 (ii) R= (a/b)* (a/b)*

4. Convert it into minimized DFA

(i) aa*/ bb*

(ii) (a/b)(a/b)(a/b)

(iii) (a/b)*abb (a/b)*

(iv) 001*(1|0)*11

(v) (00)*|(11)*

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

17

SYNTAX ANALYSIS

3.1 Introduction

 Syntax analysis or parsing is the second phase of a compiler. In this chapter, we shall

learn the basic concepts used in the construction of a parser.

 We have seen that a lexical analyzer can identify tokens with the help of regular

expressions and pattern rules. Due to the limitations of regular expressions the lexical

analyzer cannot check the syntax of a given sentence. Regular expressions cannot check

balancing tokens, such as parenthesis. Therefore, this phase uses context-free grammar

(CFG), which is recognized by push-down automata.

CFG, on the other hand, is a superset of Regular Grammar, as depicted below:

Figure 3.1 Grammar Hierarchy

 It implies that every Regular Grammar is also context-free, but there exists some

problems, which are beyond the scope of Regular Grammar. CFG is a helpful tool in

describing the syntax of programming languages.

3.2 Context-Free Grammar

 In this section, we will first see the definition of context-free grammar and

terminologies used in parsing technology.

A context-free grammar has four components:

 A set of non-terminals (N). Non-terminals are syntactic variables that denote sets of

strings. The non-terminals define sets of strings that help define the language

generated by the grammar.

 A set of tokens, known as terminal symbols (T). Terminals are the basic symbols from

which strings are formed.

 A set of productions (P). The productions of a grammar specify the manner in which

the terminals and non-terminals can be combined to form strings. Each production

consists of a non-terminal called the left side of the production, an arrow, and a

sequence of tokens and/or on- terminals, called the right side of the production.

 One of the non-terminals is designated as the start symbol (S); from where the

production begins.

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

18

 The strings are derived from the start symbol by repeatedly replacing a non-terminal

(initially the start symbol) by the right side of a production, for that non-terminal.

Example

 We take the problem of palindrome language, which cannot be described by means of

Regular Expression. That is, L = { w | w = wR } is not a regular language. But it can be

described by means of CFG, as illustrated below:

G = (N, T, P, S) or G = (Vn, Vt, P, S)

Where,

N or Vn = { Q, Z, N }

T or Vt= { 0, 1 }

P = { Q → Z | Q → N | Q → ℇ | Z → 0Q0 | N → 1Q1 }

S = { Q }

 This grammar describes palindrome language, such as: 1001, 11100111, 00100,

1010101, 11111, etc.

3.3 Syntax Analyzer

 A syntax analyzer or parser takes the input from a lexical analyzer in the form of token

streams. The parser analyzes the source code (token stream) against the production rules

to detect any errors in the code. The output of this phase is a parse tree.

Figure 3.2 Working principle Syntax Analyzer

 In this way, the parser accomplishes two tasks, i.e., parsing the code and looking for

errors. Finally a parse tree is generated as the output of this phase.

 Parsers are expected to parse the whole code even if some errors exist in the program.

Parsers use error recovering strategies, which we will learn later in Error Handling

Chapter.

3.4 Derivation

 A derivation is basically a sequence of production rules, in order to get the input

string. During parsing, we take two decisions for some sentential form of input:

1) Deciding the non-terminal which is to be replaced.

2) Deciding the production rule, by which, the non-terminal will be replaced.

To decide which non-terminal to be replaced with production rule, we can have two

options.

3.4.1 Left-Most Derivation(LMD)

 If the sentential form of an input is scanned and replaced from left to right, it is called

left-most derivation. The sentential form derived by the left-most derivation is called the

left-sentential form.

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

19

3.4.2 Right-Most Derivation(RMD)

 If we scan and replace the input with production rules, from right to left, it is known

as right-most derivation. The sentential form derived from the right-most derivation is

called the right-sentential form.

Example

Production rules:

 E → E + E

 E → E * E

 E → id

Input string: id + id * id

The left-most derivation is: The right-most derivation is:

 E → E * E

E → E + E * E

E → id + E * E

E → id + id * E

E → id + id * id

E → E + E

E → E + E * E

E → E + E * id

E → E + id * id

E → id + id * id

Note: In this the left-most side non-terminal

is always processed first.

Note: Here the Right-most side non-terminal

is always processed first.

3.5 Parse Tree

 A parse tree is a graphical depiction of a derivation. It is convenient to see how strings

are derived from the start symbol. The start symbol of the derivation becomes the root of

the parse tree.

 Let us see this by an example,

 The given string is, a + b * c

 The given Grammar is EE*E / E+E / id.

The left-most derivation is:

 E → E * E

 E → E + E * E

 E → id + E * E

 E → id + id * E

 E → id + id * id

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

20

In a parse tree:

1. All leaf nodes are terminals.

2. All interior nodes are non-terminals.

3. In-order traversal gives original input string.

A parse tree depicts associativity and precedence of operators. The deepest sub-tree is

traversed first, therefore the operator in that sub-tree gets precedence over the operator

which is in the parent nodes.

Exercise 1:

Consider the grammar

S  iCtS

S  iCtSeS

S  a

S  b

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

21

 The following example explains bottom up approach of the leftmost derivations for the

sentence W=ibtibtaea

 S aAcBe; AAb; A b; Bd and the input string is abbcde, we have to reduce it to

S.

 Abbcde  abbcBe

  aAbcBe

  aAcBe

 S

3.6 Ambiguity

 A grammar G is said to be an ambiguous if it has more than one parse tree (left or

right derivation) for at least one string.

Example

 E → E + E

 E → E – E

 E → id

For the string id + id – id, the above grammar generates two parse trees:

 When the non-terminal on the right side of given production depends on the non-

terminal on the left side of the same production, the grammar thus formed is called

inherently Ambiguous. From the above example, the language generated by an

ambiguous grammar is said to be inherently ambiguous. Ambiguity in grammar is not

good for a compiler construction. No method can detect and remove ambiguity

automatically, but it can be removed by either re-writing the whole grammar without

ambiguity, or by setting and following associativity and precedence constraints.

3.6.1 Associativity

 If an operand has operators on both sides, the side on which the operator takes this

operand is decided by the associativity of those operators. If the operation is left-

associative, then the operand will be taken by the left operator; or if the operation is right-

associative, the right operator will take the operand.

Example

 Operations such as Addition, Multiplication, Subtraction, and Division are left

associative. If the expression contains:

 id op id op id

 it will be evaluated as:

 (id op id) op id

 For example, (id + id) + id

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

22

 Operations like Exponentiation are right associative, i.e., the order of evaluation in the

same expression will be:

 id op (id op id)

 For example, id ^ (id ^ id)

3.6.2 Precedence

 If two different operators share a common operand, the precedence of operators

decides which will take the operand. That is, 2+3*4 can have two different parse trees, one

corresponding to (2+3)*4 and another corresponding to 2+(3*4). By setting precedence

among operators, this problem can be easily removed. As in the previous example,

mathematically * (multiplication) has precedence over + (addition), so the expression

2+3*4 will always be interpreted as:

 2 + (3 * 4)

 These methods decrease the chances of ambiguity in a language or its grammar.

3.6.3 Using Ambiguous Grammars

 Let the natural ambiguous grammar for arithmetic expressions with operator + and *

be,

 EE+E\E*E\(E)\id

 Assuming that the precedence and associativity of the operators + and * has been

specified elsewhere

 There are 2 reasons for using this grammar instead of using

 EE+T,ET,TT*F,TF,F(E),Fid

1) We can easily change the associative and precedence levels of the operator + and *

without disturbing the production in 1 or the number of states in the resulting parse.

2) The parser for the unambiguous grammar will spend a substantial of its time reducing

by the single productions ET and TF ,where role function if to enforce associativity

and precedence information .the parser for 1 will not waste time reducing by single

productions

3.7 Left Recursion

 A grammar becomes left-recursive if it has any non-terminal „A‟ whose derivation

contains „A‟ itself as the left-most symbol. Left-recursive grammar is considered to be a

problematic situation for top-down parsers. Top-down parsers start parsing from the Start

symbol, which in itself is non-terminal. So, when the parser encounters the same non-

terminal in its derivation, it becomes hard for it to judge when to stop parsing the left non-

terminal and it goes into an infinite loop.

Example:

(1) A => Aα | β

(2) S => Aα | β

A => Sd

(1) is an example of immediate left recursion, where A is any non-terminal symbol and α

represents a string of non-terminals.

(2) is an example of indirect-left recursion.

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

23

 A top-down parser will first parse A, which in-turn will yield a string consisting of A

itself and the parser may go into a loop forever.

3.7.1 Removal of Left Recursion

 One way to remove left recursion is to use the following technique:

 The production

 A => Aα | β

 is converted into following productions A=> βA'

 This does not impact the strings derived from the grammar, but it removes immediate

left recursion.

 Second method is to use the following algorithm, which should eliminate all direct and

indirect left recursions.

Example

The production set

 S => Aα | β

 A => Sd

after applying the above algorithm, should become

 S => Aα | β

 A => Aαd | βd

and then, remove immediate left recursion using the first technique.

 A => βdA'

 A' => αdA' | ε

Now none of the production has either direct or indirect left recursion.

Example

Production Rule No With Left Recursion
If the production is A Aα | β

Without Left Recursion
AβA'

A' => αA' | ε

1 EE+T | T E TE‟
E‟ +TE‟ | ε

2 TT*F | F TFT‟
T‟ *FT‟ | ε

3 F(E) | id No need for Left Recursion.

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

24

3.7.2 Left Factoring

 If more than one grammar production rules has a common prefix string, then the top-

down parser cannot make a choice as to which of the production it should take to parse

the string in hand.

Example

If a top-down parser encounters a production like

A ⟹ αβ | α | …

 Determine which production to follow to parse the string, as both productions are

starting from the same terminal (or non-terminal). To remove this confusion, we use a

technique called left factoring.

 Left factoring transforms the grammar to make it useful for top-down parsers. In this

technique, we make one production for each common prefixes and the rest of the

derivation is added by new productions.

Example

The above productions can be written as

A => αA‟

A‟=> β | | …

 Now the parser has only one production per prefix which makes it easier to take

decisions.

3.8 Limitations of Syntax Analyzers

 Syntax analyzers receive their inputs, in the form of tokens, from lexical analyzers.

Lexical analyzers are responsible for the validity of a token supplied by the syntax

analyzer. Syntax analyzers have the following drawbacks:

 it cannot determine if a token is valid,

 it cannot determine if a token is declared before it is being used,

 it cannot determine if a token is initialized before it is being used,

 It cannot determine if an operation performed on a token type is valid or not.

 These tasks are accomplished by the semantic analyzer, which we shall study in

Semantic Analysis.

3.9 Types of Parsing

 Syntax analyzers follow production rules defined by means of context-free grammar.

The way the production rules are implemented (derivation) divides parsing into two types:

top-down parsing and bottom-up parsing.

Figure 3.3 Types of Parsing

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

25

Top-down Parsing

 When the parser starts constructing the parse tree from the start symbol and then

tries to transform the start symbol to the input, it is called top-down parsing.

 Recursive descent parsing: It is a common form of top-down parsing. It is called

recursive, as it uses recursive procedures to process the input. Recursive descent

parsing suffers from backtracking.

 Backtracking: It means, if one derivation of a production fails, the syntax analyzer

restarts the process using different rules of same production. This technique may

process the input string more than once to determine the right production.

Bottom-up Parsing

 As the name suggests, bottom-up parsing starts with the input symbols and tries to

construct the parse tree up to the start symbol.

Note:

 In both the cases the input to the parser is being scanned from left to right, one

symbol at a time.

 The bottom-up parsing method is called “Shift Reduce” parsing. The top-down parsing

is called “Recursive Decent” parsing.

 An operator-precedence parser is one kind of shift reduce parser and predictive parser

is one kind of recursive descent parser.

Example:

Input string : a + b * c

Production rules:

 S → E

 E → E + T

 E → E *T

 E → T

 T → id

Let us start bottom-up parsing.

 a + b * c

Read the input and check if any production matches with the input:

 a + b * c

 T + b * c

 E + b * c

 E + T * c

 E * c

 E * T

 E

 S

3.9.1 TOP-DOWN PARSING

 We have learnt in the last chapter that the top-down parsing technique parses the

input, and starts constructing a parse tree from the root node gradually moving down to

the leaf nodes. The types of top-down parsing are depicted below:

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

26

Figure 3.4 Top down Parser

3.9.1.1 Recursive Descent Parsing

 Recursive descent is a top-down parsing technique that constructs the parse tree from

the top and the input is read from left to right. It uses procedures for every terminal and

non-terminal entity. This parsing technique recursively parses the input to make a parse

tree, which may or may not require back-tracking. But the grammar associated with it (if

not left factored) cannot avoid back-tracking. A form of recursive-descent parsing that

does not require any back-tracking is known as predictive parsing.

 This parsing technique is regarded recursive, as it uses context-free grammar which is

recursive in nature.

Back-tracking

 Top- down parsers start from the root node (start symbol) and match the input string

against the production rules to replace them (if matched). To understand this, take the

following example of CFG:

 S → rXd | rZd

 X → oa | ea

 Z → ai

For an input string: read, a top-down parser, will behave like this:

 It will start with S from the production rules and will match its yield to the left-most

letter of the input, i.e. „r‟. The very production of S (S → rXd) matches with it. So the top-

down parser advances to the next input letter (i.e. „e‟). The parser tries to expand non-

terminal „X‟ and checks its production from the left (X → oa). It does not match with the

next input symbol. So the top-down parser backtracks to obtain the next production rule

of X, (X → ea).

 Now the parser matches all the input letters in an ordered manner. The string is

accepted.

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

27

 In recursive descent parsing, the parser may have more than one production to choose

from for a single instance of input; whereas in predictive parser, each step has at most

one production to choose. There might be instances where there is no production

matching the input string, making the parsing procedure to fail.

Predictive Parser

 Predictive parser is a recursive descent parser, which has the capability to predict

which production is to be used to replace the input string. The predictive parser does not

suffer from backtracking.

 To accomplish its tasks, the predictive parser uses a look-ahead pointer, which points

to the next input symbols. To make the parser back-tracking free, the predictive parser

puts some constraints on the grammar and accepts only a class of grammar known as

LL(k) grammar.

Figure 3.5 Principle of Predictive Parser

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

28

 Predictive parsing uses a stack and a parsing table to parse the input and generate a

parse tree. Both the stack and the input contains an end symbol $ to denote that the

stack is empty and the input is consumed. The parser refers to the parsing table to take

any decision on the input and stack element combination.

Steps to be involved in Parsing Method:

 Stack is pushed with $.

 Construction of parsing table T.

 Computation of FIRST set.

 Computation of FOLLOW set.

 Making entries into the parsing table.

 Parsing by parsing routine.

Construction of parsing table

First and Follow Sets

 An important part of parser table construction is to create first and follow sets. These

sets can provide the actual position of any terminal in the derivation. This is done to

create the parsing table where the decision of replacing T[A, t] = α with some production

rule.

First Set

 This set is created to know what terminal symbol is derived in the first position by a

non-terminal.

 To compute FIRST(X) for all grammar symbols X, apply the following rules until no

more terminals or ε can be added to any FIRST set.

 For example,

 A→ t β

 That is, A derives t (terminal) in the very first position. So, t ∈ FIRST(A).

Algorithm for Calculating First Set

Look at the definition of FIRST (X) set:

1) If X is terminal, then FIRST{X}

2) If X is non terminal and Xaα is a production then add a to FIRST(X).if xε is a

production, then add ε to FIRST(X)

3) If XY1 ,Y2…Yk is a production, then ---- I ------- all of Y1 ,Y2…Yi-1 are non terminals

X FIRST(Yj) contains ε for j=1,2…j-1 (i.e. Y1 ,Y2…Yi-1
*=>ε add every non ε symbol in

first (Yi) for all j=1,2…k then add ε to FIRST (X)

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

29

Follow Set

 Likewise, we calculate what terminal symbol immediately follows a non-terminal A in

production rules. We do not consider what the non-terminal can generate but instead, we

see what would be the next terminal symbol that follows the productions of a non-

terminal.

 To compute follow (A) for all non-terminals A, apply the following rules until nothing

can be added to any FOLLOW set.

Algorithm for Calculating Follow Set

1. $ is in follow (S), where S is the start symbol.

2. If there is production A αBβ, β≠ε then everything in FIRST (β) but ε is in FOLLOW (B)

3. If there is a production AαB or a production A αBβ where FIRST (β) contains ε (i.e.

β*=>ε) then everything in FOLLOW (A) is in FOLLOW (B).

Example: (Left Recursion Eliminated Grammar)

E  TE‟

E‟  +TE‟/ε

T FT‟

T‟ *FT‟/ε

F  (E) /id

Productions Without ε

Rule 2 Follows

A αBβ, β≠ε

FOLLOW (B)= FIRST (β)

Except ε

Productions With ε

Rule 3 Follows

AαB

Or

A αBβ, β=ε

FOLLOW(B)=FOLLOW(A)

 E  TE‟

FOLLOW(E‟)=FOLLOW(E)=

 {),$}

E‟  +TE‟

E‟≠ε

FOLLOW(T)=FIRST(E‟)={

+ }

E‟  +TE‟

E‟=ε

FOLLOW(T)=FOLLOW(E‟) =

{), +,$ }

 T FT‟

FOLLOW(T‟)=FOLLOW(T)=

{),+,$ }

T‟ *FT‟

T‟≠ε

FOLLOW(F)=FIRST(T‟)={ *

}

T‟ *FT‟

T‟=ε

FOLLOW(F)=FOLLOW(T‟)=

{),+, *, $}

F  (E)

FOLLOW(E)=FIRST(„)‟)={),

$}

E is the Start symbol so

$ included in FIRST set

according to the rule 1.

Result:

 FOLLOW (E) =FOLLOW (E‟) = {), $}

FOLLOW (T) =FOLLOW (T‟) = {), +, $}

FOLLOW (F) = {), *, +, $}

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

30

Then

 FIRST (E) = FIRST (T) =FIRST (F) = {(, id}

FIRST (E‟) = {+, ε}

FIRST (T‟) = {*, ε}

FOLLOW (E) =FOLLOW (E‟) = {), $}

FOLLOW (T) =FOLLOW (T‟) = {), +, $}

FOLLOW (F) = {), *, +, $}

Parsing table for Grammar:

Rules for making entries in to the table:

1. If there is a ε transition means, make entries on FIRST (α) and FOLLOW(α) by

Production rule.

a. On FIRST (α) with corresponding production rule.

b. On FOLLOW (α) with ε production rule.

2. If there is no ε transition means, make entries on FIRST (α) set only by production

rule.

 Id + * () $

E ETE‟ ETE‟

E‟ E‟+TE E‟ ε E‟ ε

T TFT‟ TFT‟

T‟ T ε T‟*FT‟ T‟ ε T‟ ε

F Fid F(E)

3.9.2 Bottom-Up Parsing

 Bottom-up parsing starts from the leaf nodes of a tree and works in upward direction

till it reaches the root node. Here, we start from a sentence and then apply production

rules in reverse manner in order to reach the start symbol. The image given below depicts

the bottom-up parsers available.

Figure 3.6 Shift Reduce Parsing Methods

3.9.2.1 Shift-Reduce Parsing

 It is called as bottom up style of parsing. Shift-reduce parsing uses two unique steps

for bottom-up parsing. These steps are known as shift-step and reduce-step.

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

31

 Shift step

 The shift step refers to the advancement of the input pointer to the next input symbol,

which is called the shifted symbol. This symbol is pushed onto the stack. The shifted

symbol is treated as a single node of the parse tree.

 Reduce step

 When the parser finds a complete grammar rule (RHS) and replaces it to (LHS), it is

known as reduce-step. This occurs when the top of the stack contains a handle. To

reduce, a POP function is performed on the stack which pops off the handle and replaces

it with LHS non-terminal symbol.

 Reducing a string W to the start symbol S of a grammar.

 At each step a string matching the right side of a production is replaced by the symbol

on the left.

Example:

 S aAcBe; AAb; A b; Bd and the string is abbcde, we have to reduce it to S.

 Abbcde  abbcBe

  aAbcBe

  aAcBe

 S

 Each replacement of the right side of the production the left side in the process above

is called reduction .by reverse of a right most derivation is called Handle

 S*αAwαβw,then Aβ in partition following is a handle of αβw. The string w to the

right of the handle contains only terminal symbol.

 A rightmost derivation in reverse often called a canonical reduction sequence, is

obtained by “Handle Pruning”.

Example:

 E E+E

 E E*E

 E(E)

 Eid

Input: id1+id2*id3E

Right Sentential Form Handle Reducing production

id1+id2*id3 id1 Eid

E+id2*id3 id2 Eid

E+E*id3 id3 Eid

E+E*E E*E EE*E

E+E E+E EE+E

E

 Ie. This example is the reverse of the sequential in the rightmost derivations.

Stack Implementation of Shift Reduce Parsing

There are two problems that must be solved if we are to automate parsing by handle

parsing.

1) To locate a handle in a right sentential form.

2) What production to choose.

There are 4 possible actions a shift reduce parser can make

1) Shift

2) Reduce

3) Accept

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

32

4) Error

1) In shift action, the next input symbol is shifted to the top of the stack.

2) In the reduce action the parser knows

 Right end of the handle.

 To locate left end of the handle within the stack.

 Decide what non-terminal to replace the handle.

 3) In an accept action, the parser announces successful completion of parsing.

 4) In an error action, parser looks for syntax error and calls an error recovery routine.

Example:

 E E+E

 E E*E

 E(E)

 Eid

Input: id1+id2*id3

3.9.2.1.2 Operator Precedence Parsing (one kind of Shift Reduce Parsing)

Definition:

 A grammar is said to be operator grammar if it has no 2 adjacent non terminals, if it

has no production right side is ε1

Example:

 Consider the grammar

 EEAE/(E)/-E/id

 A+/-/*/….. / ↑is not an operator grammar

Because EAEα adjacent non terminals

However it can be easily converted into operator grammar as follows.

EE+E/E*E/E-E/E^E/(E)/-E/id

Precedence relation between pair of terminal:

Relation Meaning

A< .b „a‟ yields precedence

A= .b „a‟ has the same precedence as „b‟

A.>b „a‟ takes precedence over „b‟

Two ways to determine precedence relations:

1) Intuitive: based on precedence and associative rules of operators

2) Constructing unambiguous grammar.

Stack Input Action

$ Id1+id2*id3$ Shift

$id1 +id2*id3$ Reduce by Eid

$E +id2*id3$ Shift

$E+ id2*id3$ Shift

$E+id2 *id3$ Reduce by Eid

$E+E *id3$ Shift

$E+E* id3$ Shift

$E+E* id3 $ Reduce by Eid

$E+E*E $ Reduce by EE*E

$E+E $ Reduce by EE+E

$E $ Accept

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

33

3) Operator precedence relation from associativity and precedence.

If operator θ1 has higher precedence than operator θ2, then

 θ1. >θ2

 θ2 < . θ1

Example:
1) * has higher precedence over +, then the relations are

*. > +

+ <. *

2) If θ1 and θ2 are operator of equal precedence then,

 θ1. > θ2 . & θ2.> θ1  left associative

 θ1 < .θ2 . & θ2<. θ1  right associative

Example:

 +, - are left associative

 + . > + , - .> -

 + .> -, - . > +

 ↑ has right associative

↑ <.↑

3) Make

 Θ<.id; id.> Θ; Θ<.c; (<.Θ

). Θ; Θ.>); Θ.>$;$<. Θ ….. θ and

(= .) ; $<. (;$< .id

(<. (; id.>$;)<. $

(<.id; id.>) ;.>)

Example:

Relation Table

 Id + * $

Id . > .> .>

+ <. .> <. .>

* <. .> .> .>

$ <. <. <.

Definition:

An operator precedence is an € free operator grammar in which the precedence relations

<. ,=. &.> constructed are disjoint

Note:

 LEADING(A)={a/A=+> γaδ, where γ is € or a single non terminal}

 TRAILING(A)={a/A=+> γaδ, where δ is € or a single non terminal}

Precedence Function

 Precedence table can be encoded by a precedence functions f & g.

 We select f & g for symbol a & b

 f(a)<g(b) whenever a<.b

 f(a)=g(b) whenever a=.b

 f(a)>g(b) whenever a.>b

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

34

Example

 Id + * $

Id . > .> .>

+ <. .> <. .>

* <. .> .> .>

$ <. <. <.

Graph Representation:

F$=0 F$=0 Fid=4 Fid=4

F+=2 F+=2

F*=4 F*=4

 + * Id $

f 2 4 4 0

g 1 3 5 0

3.10 LR Parser

 The LR parser is a non-recursive, shift-reduce, bottom-up parser. It uses a wide class

of context-free grammar which makes it the most efficient syntax analysis technique. LR

parsers are also known as LR(k) parsers, where L stands for left-to-right scanning of the

input stream; R stands for the construction of right-most derivation in reverse, and k

denotes the number of look ahead symbols to make decisions.

 An LL Parser accepts LL grammar. LL grammar is a subset of context-free grammar

but with some restrictions to get the simplified version, in order to achieve easy

implementation. LL grammar can be implemented by means of both algorithms, namely,

recursive-descent or table-driven.

 LL parser is denoted as LL(k). The first L in LL(k) is parsing the input from left to right,

the second L in LL(k) stands for left-most derivation and k itself represents the number of

look aheads. Generally k = 1, so LL(k) may also be written as LL(1).

Figure 3.7 LL Parser

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

35

3.10.1 LL Parsing Algorithm

 We may stick to deterministic LL(1) for parser explanation, as the size of table grows

exponentially with the value of k. Secondly, if a given grammar is not LL(1), then usually,

it is not LL(k), for any given k.

There are three widely used algorithms available for constructing an LR parser:

I. SLR(1) – Simple LR Parser:

1. Works on smallest class of grammar

2. Few number of states, hence very small table

3. Simple and fast construction

II. LR(1) – LR Parser:

1. Works on complete set of LR(1) Grammar

2. Generates large table and large number of states

3. Slow construction

III. LALR(1) Look-Ahead LR Parser:

i. Works on intermediate size of grammar

ii. Number of states are same as in SLR(1)

3.10.2 Simple LR Parser

Simple LR parser has 2 components:

1) Constructing of LR(0) items

2) Constructing of parsing table.

Construction of LR (0) Items

 The collection of sets of LR (0) item is called SLR

 The collection of sets of LR (0) items can be constructed with the help of functions

called CLOSURE and GOTO functions. This collection is called canonical collection of LR

(0) items.

Step 1: Creating augmented grammar

 Consider the grammar G & S is the start symbol. The augmented grammar of G is

with a new start „S‟ and having a production S‟S

Example:

Grammar G The augmented grammar of

G’

EE+T

E T

TT*F

TF

F (E)

Fid

E‟E

EE+T

ET

TT*F

TF

F (E)

Fid

 Step 2: CLOSURE ()

 Let us say I is a set of items for a grammar G, then CLOSURE of I can be computed by

using the following steps.

1. Initially, every item in I is added to CLOSURE(I)

2. Consider the following,

 If AX.BY an item in I, and BZ production then add this production in I in the

following form B .Z ,but if it is not already there.

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

36

Example:

Closure (E‟.E) = E‟.E

 E.E+T

 E.T

 T.T*F

 T.F

 F. (E)

 F.id

 I0

Step 3: perform GOTO (I, X) (I is CLOURE set and X is all Grammar symbol)

 This is computed for a set I on a grammar symbol X. GOTO (I, X) is defined to be the

closure of the set of all items [AαX.β] such that [Aα.Xβ] is in I.

 Consider an item in I‟s production is maybe like this means,

 A.XBY then

 GOTO (I, X) will be performed based on the following Rules:

1. If AX.BY where B is a Terminal, including this item only in the CLOSURE (X) Item.

2. If AX.BY where B is a Non-Terminal including this item along with B‟s CLOSURE (B).

Example:

I0 : E‟.E

E.E+T

 E.T

T.T*F

 T.F

F. (E)

 F.id

GOTO (I0, E) = E‟E.

 EE. +T

 I1

GOTO (I0, T) = ET.

 TT.*F

 I2

GOTO (I0, F) = TF. I3

GOTO (I0,+) =GOTO(I0,*)= GOTO (I0.))= null

 GOTO(I0,() = F(.E)

 E.E+T

 E.T

 T.T*F

 T.F

 F. (E)

 F.id

// 2 rule in step

3 is applied here

 I4

GOTO (I0, id) =Fid I5

I1: E‟E.

 EE. +T is GOTO (I1, X)

 GOTO (I1, E) =GOTO (I1, T) = GOTO (I1, F) =GOTO (I1,*) = GOTO (I1,

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

37

() =GOTO (I1,))=GOTO (I1, id) =Null

 GOTO (I1, +) =EE+.T

 T.T*F

 T.F

 F. (E)

 F.id

 // Rule 2 in

step 3

 I6

 I2: ET.

 TT.*F GOTO(I2,X)

GOTO(I2,E)=GOTO(I2,T)=GOTO(I2,F)=GOTO(I2,+)=GOTO (I2,() = GOTO (I2,))

=GOTO (I2,id)=Null

GOTO(I2,*)=TT*.F

 F.(E)

 F.id

 // Rule 2 in

step 3

I7

 I3: TF. I.e. GOTO(I3,X)

GOTO(I3,E)=GOTO(I3,T)=GOTO(I3,F)=GOTO(I3,*)= GOTO(I3,+)=

GOTO(I3,()=GOTO(I3,))=GOTO(I3,id)=null ;

I4: F(.E)

 E.E+T

E.T

 T.T*F

T.F

 F. (E)

F.id GOTO(I4,X) is,

GOTO(I4,E)= F(E.)

 EE.+T

I8

GOTO(I4, T)= TT.*F

 E T .

I2

GOTO(I4,F)= TF. I3

GOTO(I4,+)=Null ; GOTO(I4,*)=null ; GOTO(I4,))=Null .

GOTO(I4,()= F(.E)

 E.E+T

 E.T

 T.T*F

 T.F

 F(.E)

 F.id

I4

GOTO(I4,id)=Fid. I5

 I5: Fid.

GOTO(I5,E)= GOTO(I5,T)= GOTO(I5,F)= GOTO(I5,+)= GOTO(I5,*)=

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

38

GOTO(I5,()=GOTO(I5,))= GOTO(I5,ID)=Null

I6: EE+.T

 T.T*F

 T.F

 F. (E)

 F.id

GOTO (I6,E)=GOTO(I6,+)=GOTO(I6,*)= GOTO(I6,))= Null

GOTO (I6,T)=EE+T.

 TT.*F

 I9

GOTO (I6,F)=TF. I3

GOTO (I6,()=F(.E)

 E.E+T

 E.T

 T.T*F

 T.F

 F. (E)

 F.id

 I4

GOTO(I6,id)=Fid I5

I7 : TT*.F

 F.(E)

 F.id

GOTO(I7,E)=GOTO(I7,T)=GOTO(I7,+)= GOTO(I7,*)= GOTO(I7,))=Null

GOTO(I7,E)=TT*F. I10

GOTO(I7,() =F(.E)

 E.E+T

 E.T

 T.T*F

 T.F

 F.(E)

 F.id

I4

 GOTO(I7,id)=Fid. I5

I8: F(E.)

 EE.+T

GOTO(I8,E)=GOTO(I8,T)=GOTO(I8,F)=GOTO(I8,*)= GOTO(I8,()=

GOTO(I8,id)=Null

GOTO(I8,+)= EE+.T

 T.T*F

 T.F

 F.(E)

 F.id

I6

 GOTO (I8,)) =F(E). I11

I9: EE+T.

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

39

 TT.*F

GOTO(I9,E)= GOTO(I9,T)= GOTO(I9,F)= GOTO(I9,+)= GOTO(I9,()= GOTO(I9,))=

GOTO(I9,id)=Null

GOTO(I9,*)= TT*.F

 F.(E)

 Fid

 I7

 I10: TT*F.

GOTO(I10,E)=GOTO(I10,T)=GOTO(I10,F)=GOTO(I10,+)= GOTO(I10,*)=

GOTO(I10,()= GOTO(I10,))= GOTO(I10,id)=Null

 I11: F (E).

GOTO(I11,E)=GOTO(I11,T)=GOTO(I11,F)=GOTO(I11,+)= GOTO(I11,*)=

GOTO(I11,()= GOTO(I11,))= GOTO(I11,id)=Null

LR (0) items:

I0: E‟.E

 E.E+T

 E.T

 T.T*F

 T.F

 F.(E)

 Fid.

I1: E‟E.

 EE. +T

I2: ET.

 TT.*F

 I3: TF.

 I4: F (.E)

 E.E+T

 E.T

 T.T*F

 T.F

 F. (E)

 F.id

 I5: Fid.

 I6: EE+ .T

 T.T*F

 T.F

 F. (E)

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

40

 F.id

 I7: TT* .F

 F. (E)

 F.id

 I8: F (E.)

 TE. +T

 I9: EE+T.

 TT. *F

 I10: TT*F.

 I11: F (E).

Construction of SLR parsing Table:

 This is also a 2 dimensional array in which the rows are states & columns are

terminals & non terminals. This table has 2 parts,

1) Action

2) Go to entries

The action may one of the following:

1) Shift

2) Reduce

3) Accept

4) Errors

Steps for Constructing SLR parsing table:

1. Let C={I0,I1…In} is the collection of sets of LR (0) items.

2. Consider Ij as a set in C, then

 If GOTO (Ij, a) =Ik then set action [j,a] to shift k, ‟a‟ is always terminal.

 If Ax. (x can be either terminal /non terminal) is in Ij then set action [j,a] to reduce

Ax …. …… „a‟ in FOLLOW (A) if x is a terminal. If x is a non-terminal set action [j, a] to

reduce Ax …. …… „a‟ in FOLLOW (X).

3. If S‟S is in Ij then set action [j,$]=k Accept.

4. If GOTO [Ij, A] =IK, then set GOTO (j, a) =k.

5. All the under defined entries are errors.

Example:

1) EE+T. is in I9 ,FOLLOW (T) ={+,$,)}

2) ET. is in I2 ,FOLLOW (T) ={+,$,)}

3) TT*F. is in I10 ,FOLLOW (F) ={+,*,$,)}

4) TF. is in I3 ,FOLLOW (F) ={+,*,$,)}

5) F(E). is in I11 ,FOLLOW ()) =FOLLOW(F)={+,*,$,)}

6) Fid. is in I5 ,FOLLOW (id) =FOLLOW(F)={+,*,$,)}

States

ACTION entries in

Terminals

GO TO entries

in Non-

Terminals

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

41

Id + * () $ E T F

0 S5 S4 1 2 3

1 S6 A

2 r2 S7 r2 r2

3 r4 r4 r4 r4

4 S5 S4 8 2 3

5 r6 r6 r6 r6

6 S5 S4 9 3

7 S5 S4 10

8 S6 S11

9 r1 S7 r1 r1

10 r3 r3 r3 r3

11 r5 r5 r5 r5

SLR parsing Algorithm

 This algorithm works in conjunction with the parsing table, for parsing an input string

.The possible action are as follows:

1) Shift

2) Reduce

3) Accept

4) Errors

 The input string is in I/p buffer followed by the right end marker $. The stack

keeps the states of the parsing table

 The I/p string has „n‟ symbols & are marked by a1, a2…an and the stack has states

S0, S1, S2…Sm

Steps involved in SLR parsing

1) If action [S0,a1]=Sj, the parser has to make a Shift of the current i/p symbol & a new

state will be „j‟ on the stack.

2) If action [Sm,aj]=Reduce by Ax,then the parser has to reduce by Ax .find out the no.

of symbols available on the right hand side of A after “ ” .let us say it r ,then POP of

(2,r) symbols from the stack.

(2.1) if GOTO [Sm-r,A]=J(states) then PUSH A onto the stack.

3) If action [Sm,aj]=Accept ,then announce that the parsing is completed successfully and

then halt.

4) If action [Sm,aj]=Error ,then the parser encounter error and calls error recovery routine

or generates error message.

Example: Input: id +id

Stack Input Event

0 Id+id$ Initial State

0id5 +id$ Shift

0F3 +id$ Reduce by Fid

0T2 +id$ Reduce by TF.

0E1 +id$ Reduce by ET.

0E1+6 id$ Shift

0E1+6 id5 $ shift

0E1+6F3 $ Reduce by Fid

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

42

0E1+6 T9 $ Reduce by TF

0E1 $ Reduce by FE+T

LL vs. LR

 LL LR

 Does a leftmost derivation. Does a rightmost derivation in reverse.

 Starts with the root nonterminal on the

stack.

Ends with the root nonterminal on the stack.

 Ends when the stack is empty. Starts with an empty stack.

 Uses the stack for designating what is still

to be expected.

Uses the stack for designating what is already

seen.

 Builds the parse tree top-down. Builds the parse tree bottom-up.

 Continuously pops a nonterminal off the

stack, and pushes the corresponding right

hand side.

Tries to recognize a right hand side on the

stack, pops it, and pushes the corresponding

nonterminal.

 Expands the non-terminals. Reduces the non-terminals.

 Reads the terminals when it pops one off

the stack.

Reads the terminals while it pushes them on

the stack.

 Pre-order traversal of the parse tree. Post-order traversal of the parse tree.

Summary

 Syntax analyzer is also called parser.

 Context free grammar is used as recognizer.

 Parse tree is an output of Parser

 Precedence rules are used to operate the operators.

 Two types of parsing, Bottom up parsing and Top Down parsing.

 Recursive descent parsing is a kind of Top Down parsing.

 Shift reduce parsing is a kind of Bottom Up parsing.

 Predictive Parser is a kind of Recursive Decent parser.

Questions

1. Explain the types of Parser.

2. Construct a Parsing Table for the Grammar

 EE+T/T

 TT*F/F

 F(E)/id

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

43

3. Differentiate left recursion and left factoring.

4. Explain the stack implementation of shift reduce parsing.

5. Describe different kinds of LR parser with an example.

ERROR HANDLING

4.1 Introduction

 A parser should be able to detect and report any error in the program. It is expected

that when an error is encountered, the parser should be able to handle it and carry on

parsing the rest of the input. Mostly it is expected from the parser to check for errors but

errors may be encountered at various stages of the compilation process. A program may

have the following kinds of errors at various stages:

 Lexical Error: name of some identifier typed incorrectly

 Syntactical Error : missing semicolon or unbalanced parenthesis

 Semantical Error: incompatible value assignment

 Logical Error: code not reachable, infinite loop

When an error is detected the reaction of compiler different.

(a) A system crash

(b) To emit invalid output

(c) To merely quit on the first detected error.

4.1.1 Reporting Errors

 Good error diagnostics should possess a number of properties,

 The massage should pinpoint the errors in terms of the original source program rather

than in terms of some internal representation

 The error message should be understandable by the user

 The message should be specific and should localize the properties.

 The message should not be redundant.

4.1.2 Sources of Errors

 The insertion of an extraneous character or token.

 The deletion of a required character or token.

 The replacement of correct character or token by an incorrect character or token.

 The transpiration of two adjacent characters or tokens.

Figure 4.1 Error Handling

Diagnostic Message Prints

Lexical Corrector Syntactic Corrector Symbol-Table

Lexical Analyzer Parser Semantic Checker

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

44

4.1.2.1 Lexical Phase Errors

 Minimum Distance Matching -> Spelling

4.1.2.2 Syntactic – Phase Errors:

 Minimum distance correction of syntactic errors.

 Black (e.g. If-else) (spelling of token)

 Time of detection LL (1) and LR (1). Two or more production E-> E+E/E*E

 Panic Mode:

 Crude but effective systematic method of error recovery in any kind of parsing.

 Here parser discards input symbol until a “Synchronizing” token (;) is encountered.

Error recovery in operator – precedence parsing

Parser can discover syntactic errors:

1. If no precedence relation holds between the terminals a top of the stack and the

current input symbol.

2. If a handle has been found but there is no production with this handle as a right side.

 Handling errors during reduction (No production rule to reduce)

 Handling shift reduce errors.

 Error recovery in LR parsing (place where there is no entry)

 Mid-Hoc error recovery for LR parsers (loop)

4.1.2.3 Semantic Errors

Undeclared name and type incompatibilities.

4.2 Error Recovery

 There are four common error-recovery strategies that can be implemented in the

parser to deal with errors in the code.

4.2.1 Panic Mode

 When a parser encounters an error anywhere in the statement, it ignores the rest of

the statement by not processing input from erroneous input to delimiter, such as semi-

colon. This is the easiest way of error-recovery and also, it prevents the parser from

developing infinite loops.

4.2.2 Statement Mode

 When a parser encounters an error, it tries to take corrective measures so that the rest

of the inputs of the statement allow the parser to parse ahead. For example, inserting a

missing semicolon, replacing comma with a semicolon, etc. Parser designers have to be

careful here because one wrong correction may lead to an infinite loop.

4.2.3 Error Productions

 Some common errors are known to the compiler designers that may occur in the code.

In addition, the designers can create augmented grammar to be used, as productions that

generate erroneous constructs when these errors are encountered.

4.2.4 Global Correction

 The parser considers the program in hand as a whole and tries to figure out what the

program is intended to do and tries to find out a closest match for it, which is error-free.

 When an erroneous input (statement) X is fed, it creates a parse tree for some closest

error-free statement Y. This may allow the parser to make minimal changes in the source

code, but due to the complexity (time and space) of this strategy, it has not been

implemented in practice yet.

4.3 Abstract Syntax Trees(AST)

 Parse tree representations are not easy to be parsed by the compiler, as they contain

more details than actually needed. Take the following parse tree as an example:

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

45

 If watched closely, we find most of the leaf nodes are single child to their parent nodes.

This information can be eliminated before feeding it to the next phase. By hiding extra

information, we can obtain a tree as shown below:

Abstract tree can be represented as:

 ASTs are important data structures in a compiler with least unnecessary information.

ASTs are more compact than a parse tree and can be easily used by a compiler.

Summary

 Errors may be encountered at various stages of the compilation process.

 The parser may discover Syntactic errors.

 Syntactic occurs when there no precedence errors.

 AST is a data structure more compact than the parse tree.

 Augmented grammar is used to generate erroneous constructs.

 Global error correction may done.

Questions

1. Explain various types of errors.

2. Describe error handling with neat diagram.

3. Write note on panic mode.

4. Differentiate parse tree and abstract syntax tree.

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

46

SEMANTIC ANALYSIS

5.1 Introduction

 We have learnt how a parser constructs parse trees in the syntax analysis phase. The

plain parse-tree constructed in that phase is generally of no use for a compiler, as it does

not carry any information of how to evaluate the tree. The productions of context-free

grammar, which makes the rules of the language, do not accommodate how to interpret

them.

For example:

 E → E + T

 The above CFG production has no semantic rule associated with it, and it cannot help

in making any sense of the production.

Semantics

 Semantics of a language provide meaning to its constructs, like tokens and syntax

structure. Semantics help interpret symbols, their types, and their relations with each

other. Semantic analysis judges whether the syntax structure constructed in the source

program derives any meaning or not.

 CFG + semantic rules = Syntax Directed Definitions

For example:

int a = “value”;

 Should not issue an error in lexical and syntax analysis phase, as it is lexically and

structurally correct, but it should generate a semantic error as the type of the assignment

differs. These rules are set by the grammar of the language and evaluated in semantic

analysis. The following tasks should be performed in semantic analysis:

 Scope resolution

 Type checking

 Array-bound checking

5.2 Semantic Actions

 Syntax directed translation schema is merely a context-free grammar in which a

program fragment called an output action is associated with each production.

 A value associated with a grammar symbol is called a translation of that symbol.

5.2.1 The syntax directed translation:

 Schema allows subroutines or semantic actions to be attached to the productions of a

context free grammar.

 These subroutines generate intermediate code when called at appropriate time by a

parser for that grammar.

 It enables the compiler designer to express the generation of intermediate code directly

in terms of the syntactic structure of the source language.

Example :

Production Semantic Action

EE +E {E.Val :=E .val+E .val}

 The semantic action is enclosed in braces, and it appears after the production.

 This translation is not suitable for a compiler, but for a “DESK CALCULATOR”

program that actually evaluates expressions rather than generating code for them.

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

47

Consider, A  XYZ { Y.Val := 2* A.Val }

 Here, the translation of a non-terminal on the Right side of the production is defined

in terms of non-terminal on the Left side. Such a translation is called inherited

translation.

5.2.2 Translation on the parse tree

 Consider the following syntax-directed translation schema suitable for a “DESK

CALCULATOR” program in which E.Val is an integer-valued translation.

PRODUCTION SEMANTIC ACTION

E E + E {E.VAL :=E .VAL+E .VAL}

E Digit {E.VAL := digit }

 Here, digit stands for any digit between 0 & 9.

Example:

 Let the input string be 5+3*4, and then the parse tree is

5.2.3 Implementation Of Syntax-Directed Translators

 The syntax directed translation scheme is a convenient description used to construct

the parse tree, mechanism used to compute the translation.

 Describes an input-output mapping.

 One way to implement a syntax-directed translator is to use extra fields in the parser

stack entries corresponding to the grammar symbol.

There are 2 steps to implement:

 Decide what intermediate code to generate for each programming language construct.

 Implement an algorithm for generating this code.

Example :

 S E $

 E E+E

 E E*E

 E (E)

 E (I)

 I I

 I I Digit

[Note I – for integer]

 To implement this syntax – directed translation scheme, we need to construct a lexical

analyzer and a bottom-up parser.



Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

48

PRODUCTION SEMANTIC ACTION

1. SE$ {print E.Val}

2. EE + E {E.Val : =E.Val+E.Val}

3. EE * E { E.Val : =E.Val*E.Val }

4. E(E) { E.Val : =E.Val}

5. EI { E.Val : =I.Val }

6. II digit {I.VAL: = 10*I.VAL+LEXVAL}

7. Idigit { I.VAL: = LEXVAL }

5.3 Parse Tree (Annotated parse tree / Dependency Graph):

 A compiler – compiler would tie the parser and the semantic action program fragments

together, producing one module.

PRODUCTION PROGRAM FRAGMENT

1. SE$ Print VAL [TOP]

2. EE+E VAL[TOP]:=VAL[TOP]+VAL[TOP-2]

3. EE*E VAL[TOP]:=VAL[TOP]*VAL[TOP-2]

4. E(E) VAL[TOP]:=VAL[TOP-1]

5. EI none

6. II digit VAL[TOP]:=10*VAL[TOP]+LEXVAL

7. Idigit VAL[TOP]:=LEXVAL

Input : 23*5+4$

NO INPUT STATE VAL PRODUCTION USED

1. 23*5+4$ -- --

2. 3*5+4$ 2 --

3. 3*5+4$ I 2 I  digit

4. *5+4$ I3 2-

5. *5+4$ I (23) I  I digit

6. *5+4$ E (23) EI

7. 5+4$ E* (23)-

8. +4$ E*5 (23)- -

9. +4$ E*I (23)-5 I  digit

10. +4$ E*E (23)-5 EI

11. +4$ E (115) EE*E

12. 4$ E+ (115)-

13. $ E+4 (115)- -

14. $ E+I (115)-4 I  digit

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

49

15. $ E+E (115)-4 EI

16. $ E (119) EE+E

17. -- E$ (119)-

18. -- S -- S E$

[Sequence of moves]

5.4 Semantic Errors

 We have mentioned some of the semantic errors that the semantic analyzer is expected

to recognize:

1. Type mismatch

2. Undeclared variable

3. Reserved identifier misuse

4. Multiple declaration of variable in a scope

5. Accessing an out of scope variable

6. Actual and formal parameter mismatch

5.5 Attribute Grammar

 Attribute grammar is a special form of context-free grammar where some additional

information (attributes) are appended to one or more of its non-terminals in order to

provide context-sensitive information. Each attribute has well-defined domain of values,

such as integer, float, character, string, and expressions.

 Attribute grammar is a medium to provide semantics to the context-free grammar and

it can help specify the syntax and semantics of a programming language. Attribute

grammar (when viewed as a parse-tree) can pass values or information among the nodes

of a tree.

Example:

 E → E + T { E.value = E.value + T.value }

 The right part of the CFG contains the semantic rules that specify how the grammar

should be interpreted. Here, the values of non-terminals E and T are added together and

the result is copied to the non-terminal E.

 Semantic attributes may be assigned to their values from their domain at the time of

parsing and evaluated at the time of assignment or conditions. Based on the way the

attributes get their values, they can be broadly divided into two categories : synthesized

attributes and inherited attributes.

5.6 Synthesized Attributes

 These attributes get values from the attribute values of their child nodes. To illustrate,

assume the following production:

 S → ABC

 If S is taking values from its child nodes (A,B,C), then it is said to be a synthesized

attribute, as the values of ABC are synthesized to S.

 As in our previous example (E → E + T), the parent node E gets its value from its child

node.

 Synthesized attributes never take values from their parent nodes or any sibling nodes.

5.7 Inherited Attributes

 In contrast to synthesized attributes, inherited attributes can take values from parent

and/or siblings. As in the following production,

S → ABC

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

50

 A can get values from S, B, and C. B can take values from S, A, and C. Likewise, C can

take values from S, A, and B.

Expansion: When a non-terminal is expanded to terminals as per a grammatical rule.

Reduction

 When a terminal is reduced to its corresponding non-terminal according to grammar

rules. Syntax trees are parsed top-down and left to right. Whenever reduction occurs, we

apply its corresponding semantic rules (actions).

 Semantic analysis uses Syntax Directed Translations to perform the above tasks.

 Semantic analyzer receives AST (Abstract Syntax Tree) from its previous stage (syntax

analysis).

 Semantic analyzer attaches attribute information with AST, which are called

Attributed AST.

 Attributes are two tuple value, <attribute name, attribute value>

 For example:

 int value = 5;

 <type, “integer”>

 <presentvalue, “5”>

 For every production, we attach a semantic rule.

 S-attributed SDT

 If an SDT uses only synthesized attributes, it is called as S-attributed SDT. These

attributes are evaluated using S-attributed SDTs that have their semantic actions written

after the production (right hand side).

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

51

 As depicted above, attributes in S-attributed SDTs are evaluated in bottom-up parsing,

as the values of the parent nodes depend upon the values of the child nodes.

L-attributed SDT

 This form of SDT uses both synthesized and inherited attributes with restriction of not

taking values from right siblings.

 In L-attributed SDTs, a non-terminal can get values from its parent, child, and sibling

nodes. As in the following production,

 S → ABC

 S can take values from A, B, and C (synthesized). A can take values from S only. B can

take values from S and A. C can get values from S, A, and B. No non-terminal can get

values from the sibling to its right.

 Attributes in L-attributed SDTs are evaluated by depth-first and left-to-right parsing

manner.

Figure 5.1 Hierarchy of SDT

 We may conclude that if a definition is S-attributed, then it is also L-attributed, as L-

attributed definition encloses S-attributed definitions.

5.8 Runtime Environment

 A program as a source code is merely a collection of text (code, statements, etc.) and to

make it alive, it requires actions to be performed on the target machine. A program needs

memory resources to execute instructions. A program contains names for procedures,

identifiers, etc., that require mapping with the actual memory location at runtime.

 By runtime, we mean a program in execution. Runtime environment is a state of the

target machine, which may include software libraries, environment variables, etc., to

provide services to the processes running in the system.

 Runtime support system is a package, mostly generated with the executable program

itself and facilitates the process communication between the process and the runtime

environment. It takes care of memory allocation and de-allocation while the program is

being executed.

5.9 Activation Trees

 A program is a sequence of instructions combined into a number of procedures.

Instructions in a procedure are executed sequentially. A procedure has a start and an end

delimiter and everything inside it is called the body of the procedure. The procedure

identifier and the sequence of finite instructions inside it make up the body of the

procedure.

 The execution of a procedure is called its activation. An activation record contains all

the necessary information required to call a procedure. An activation record may contain

the following units (depending upon the source language used).

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

52

Temporaries Stores temporary and intermediate

values of an expression.

Local Data Stores local data of the called

procedure.

Machine Status Stores machine status such as

Registers, Program Counter, etc.,

 before the procedure is called.

Control Link Stores the address of activation

record of the caller procedure.

Access Link Stores the information of data which

is outside the local scope.

Actual

Parameters

Stores actual parameters, i.e.,

parameters which are used to send

 input to the called procedure.

Return Value Stores return values.

 Whenever a procedure is executed, its activation record is stored on the stack, also

known as control stack. When a procedure calls another procedure, the execution of the

caller is suspended until the called procedure finishes execution. At this time, the

activation record of the called procedure is stored on the stack.

 We assume that the program control flows in a sequential manner and when a

procedure is called, its control is transferred to the called procedure. When a called

procedure is executed, it returns the control back to the caller. This type of control flow

makes it easier to represent a series of activations in the form of a tree, known as the

activation tree.

 To understand this concept, we take a piece of code as an example:

 printf(“Enter Your Name: “); scanf(“%s”, username); show_data(username);

 printf(“Press any key to continue…”);

 . . .

 int show_data(char *user)

 {

 printf(“Your name is %s”, username); return 0;

 }

 Given below is the activation tree of the code:

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

53

 Now we understand that procedures are executed in depth-first manner, thus stack

allocation is the best suitable form of storage for procedure activations.

SUMMARY

 Syntax directed translation is a context free grammar.

 Syntax directed translation is helps to generates Intermediate code.

 Sematic actions is enclosed in curly braces.

 The translation of a non-terminal on the Right side of the production is defined in

terms of non-terminal on the Left side is called inherited translation.

 Input and output mapping is described using Syntax directed translator.

 The parse tree having values in the node is called Annotated Parse tree.

Questions

1. Explain syntax directed translation.

2. Define sematic actions.

3. Write note on decency graph.

4. Generate a sematic action for production S E$

EE + E/ E*E/(E)/(I)

II/Idigit (Where I is a Integer)

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

54

6. SYMBOL TABLE
8.1 Introduction

 Symbol table is an important data structure created and maintained by compilers in

order to store information about the occurrence of various entities such as variable

names, function names, objects, classes, interfaces, etc. Symbol table is used by both the

analysis and the synthesis parts of a compiler.

A symbol table may serve the following purposes depending upon the language in hand:

 To store the names of all entities in a structured form at one place.

 To verify if a variable has been declared.

 To implement type checking, by verifying assignments and expressions in the source

code are semantically correct.

 To determine the scope of a name (scope resolution).

8.2 Symbol Tables

 A compiler needs to collect and use information about the names appearing in the

source program. This information is entered into a data structure called a Symbol

Table.

 Thus, the information collected about the name includes the string of characters by

which it is denoted, its type (e.g. Integer, real, string), its form (e.g. simple variable a

structure), its location in memory and other attributes depending on the language

 Each entry in the symbol table is a pair of the form (name and information)

 Each time a name is encountered, the symbol table is searched to see whether that

name has been seen previously. If it is new, then it is entered into the table.

 Information about the name is entered into the symbol table during lexical and

syntactic analysis.

 Symbol table is used in the several stages of the compiler.

8.2.1 The Contents of a Symbol Table

 A symbol table is simply a table which can be either linear or a hash table. It

maintains an entry for each name in the following format:

 <symbol name, type, attribute>

 For example, if a symbol table has to store information about the following variable

declaration:

 static int interest;

 then it should store the entry such as:

 <interest, int, static>

The attribute clause contains the entries related to the name.

 Using a Symbol Table, we can able to

(i) determine whether a given name is in the table

(ii) add a new name to the table

(iii) access the information associated with a given name, and

(iv) add new information for a given name

(v) delete a name or group of names from the table

 There may be separate tables for variable names, labels, procedure names, constants,

field names and other types of names depending on the language.

 Depending on how lexical analysis is performed, it may be useful to enter keywords

(reserved keywords) into the symbol table initially. If not a warning may occur.

 Let us consider the data can be associated with a name in the symbol table, This

information includes,

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

55

1. The string of characters denoting the name.

2. Attributes of the name and information identifying what use is being made of the

name.

3. Parameters, (Dimensions of arrays etc.)

4. An offset describing the partition in storage to be allocated for the name.

5. The syntax of the language may also implicitly declared variables to play certain role.

8.2.1.1 Names and Symbol – Table Records

 The simplest way to implement a symbol table is as a linear array of records, one

record per name.

 A record consists of number of consecutive words of memory, identifier.

8.2.1.2 Reusing Symbol – Table space

 The identifier used by the programmer to denote a particular name must be preserved

in the symbol table until no further references to that identifier can possibly denote

the same name.

 This is essential so that all users of the identifier can be associated with the same

symbol table entry, and hence the same name.

 A compiler can be designed to run in less space if the space used to store identifiers

can be reused in subsequent passes.

8.2.1.3 Array Names

 If the language places a limit on the number of dimensions, then all subscript

information can in principle, be paced in the symbol table record itself

 The upper limit and lower limit of a dynamically allocated array can be any expression

evaluate at run time, when the storage is allocated for the array.

 If an expression is a constant, its value can be stored in the symbol table.

 If a limit is declared to be an expression, the compiler must generate code to evaluate

that expression and assign the result to a temporary variable T.

8.2.1.4 Indirection In Symbol-Table Entries

 Designing Symbol-Table formats that have pointers to information that is of variable

length.

 Save space i.e. allocating in each symbol-table entry the maximum possible amount of

space.

 The most significant advantage in using indirection comes when we, have a type of

information that is applicable to only a minority of the entries.

8.2.1.5 Storage Allocation Information

 To denote the locations in the storage belonging to objects at run time.

 Static storage  if the object code is assembly language  generating assembly code

scan the symbol table  generates definition  appended to the executable portion.

 Machine code  generated by compiler – stored with a fixed origin.

 The same remark applies to blocks of data loaded as a module separate from the

executable program.

 In the case of names where storage is allocated on a stack, the compiler need not

allocate storage at all.

 The compiler must plan out the activation record for each procedure.

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

56

Figure 6.1 Activation Record

8.3 Implementation of Symbol Table

 If a compiler is to handle a small amount of data, then the symbol table can be

implemented as an unordered list, which is easy to code, but it is only suitable for small

tables only.

8.3.1 Data Structure for Symbol Tables

 In designing a Symbol-Table mechanism, there should be a scheme that allows,

adding new entries and finding existing entries in a table efficiently.

 A symbol table can be implemented in one of the following ways:

1. Linear (sorted or unsorted) list

2. Binary Search Tree

3. Hash table

 Among all, symbol tables are mostly implemented as hash tables, where the source

code symbol itself is treated as a key for the hash function and the return value is the

information about the symbol.

 Each scheme is evaluated on the basis of the time required to add n entries and make

in enquiries

8.3.2 Lists

 Simple and easy to implement.

 Use a single array or equivalent several arrays to store names and associated

information.

 To retrieve information about a name, we have to search from the beginning of the

array up to the partition marked by pointer AVAILABLE, which indicates the beginning

of the empty portion of the array.

 To add a new name, stores it immediately following AVAILABLE and increase the

pointer by the width of a symbol-table record.

Self-Organizing Lists

 Needs little extra space, save a little bit time.

 Three fields, NAME1, DATA1, and LINK1 are there.

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

57

8.3.3 Search Trees

 To add two link fields, LEFT, RIGHT, to each record.

 Use these fields to link the records into a binary search tree.

 While p ≠ null do

 If NAME =NAME (p) then ……. /* Name found, take action on success

 Else if NAME<NAME (p) then p: =LEFT (p) /*visit left child*/

Else if NAME (p) <NAME then p: =RIGHT (p) /*visit right child*/

8.3.4 Hash Tables

 Two tables, a hash table and a storage table are used.

 Hashing mean variation of searching techniques.

Open hashing  no limit on the number of entries.

 The Average time to insert „n‟ Name and to make „e‟ enquires is n (n+e)/m

 If m is large, average time will be reduced.

 If m is smaller, average time will be high.

Hashing Method

 Consist of a fixed away of m pointers to table entries.

 Table entries organized into „m‟ separate linked list called buckets

 The hash table consists of K words, numbered a, 1…. K-1.  There are pointers to

the storage table.

 Hash function h such that h (NAME) is an integer value between 0 and k-1, is used to

find whether NAME is in the symbol table.

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

58

Characteristic

 Uniform Distribution

8.4 Operations

 A symbol table, either linear or hash, should provide the following operations.

8.4.1 insert()

 This operation is more frequently used by analysis phase, i.e., the first half of the

compiler where tokens are identified and names are stored in the table. This operation is

used to add information in the symbol table about unique names occurring in the source

code. The format or structure in which the names are stored depends upon the compiler

in hand.

 An attribute for a symbol in the source code is the information associated with that

symbol. This information contains the value, state, scope, and type about the symbol. The

insert() function takes the symbol and its attributes as arguments and stores the

information in the symbol table.

For example:

int a;

should be processed by the compiler as:

insert(a, int);

8.4.2 lookup()

lookup () operation is used to search a name in the symbol table to determine:

1. If the symbol exists in the table.

2. If it is declared before it is being used.

3. If the name is used in the scope.

4. If the symbol is initialized.

5. If the symbol declared multiple times.

 The format of lookup() function varies according to the programming language. The

basic format should match the following:

lookup(symbol)

 This method returns 0 (zero) if the symbol does not exist in the symbol table. If the

symbol exists in the symbol table, it returns its attributes stored in the table.

8.4.3 Scope Management

 A compiler maintains two types of symbol tables: a global symbol table which can be

accessed by all the procedures and scope symbol tables that are created for each scope in

the program.

 To determine the scope of a name, symbol tables are arranged in hierarchical

structure as shown in the example below:

 . . .

 int value=10;

 void pro_one()

 {

 int one_1; int one_2;

 {

 int one_3; inner scope 1

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

59

 int one_4;

 }

 int one_5;

 {

 int one_6; inner scope 2

 int one_7;

 }

 }

 void pro_two()

 {

 int two_1;

 int two_2;

 {

 int two_3; inner scope 3

 int two_4;

 }

 int two_5;

 }

 . . .

 The above program can be represented in a hierarchical structure of symbol tables:

 The global symbol table contains names for one global variable (int value) and two

procedure names, which should be available to all the child nodes shown above. The

names mentioned in the pro_one symbol table (and all its child tables) are not available for

pro_two symbols and its child tables.

 This symbol table data structure hierarchy is stored in the semantic analyzer and

whenever a name needs to be searched in a symbol table, it is searched using the

following algorithm:

1. first a symbol will be searched in the current scope, i.e., current symbol table,

2. if a name is found, then search is completed, else it will be searched in the parent

symbol table until,

3. either the name is found or the global symbol table has been searched for the name.

8.5 Implementation of A simple stack – Allocation Scheme

 Consider an implementation of the UNIX programming language C.

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

60

 Data in C can be global, meaning it is allocated as static storage and available to any

procedure or local, meaning it can be accessed only by the procedure in which it is

declared.

6.6 Implementation of Block-Structure Languages

 Here activation records must be reserved for blocks.

 Permit array of adjustable length.

 The data-referencing environment of a procedure or block includes all procedures and

blocks surrounding it in the program.

 Display, parameter passing, creation of space for arrays.

6.7 Storage Allocation in FORTRAN

 Permits static storage allocation

 Compiler can create a number of data areas, in which the values of names can be

stored.

Two Types of data areas:

 common

 equivalence

6.7.1 Data in Common Area

 For each block, a record giving the first and last names of the current routine that are

declared to be in that common block.

COMMON / BLOCK1 NAME1 /NAME2

 Creates a common Block Block1.

 NAME1 AND NAME2 set a pointer to the symbol-table entry for BLOCK 1.

6.7.2 A Simple Equivalence Algorithm

Equivalence statements all of the form

 EQUIVALENCE A, B+OFFSET

Where A and B are the names of locations.

 The effect of the above statement is to make A denote the location which is OFFSET

memory units beyond the location for B.

 The sequence of EQUIVALENCE statements groups names into equivalence sets whose

partitions relative to one another are all defined by the EQUIVALENCE statements.

E.g.:

 EQUIVALENCE A, B+100

 EQUIVALENCE C, D-4

 EQUIVALENCE A, C+30

 EQUIVALENCE E, F

 Last in First out use of Temporaries, if so many temporary variables.

6.8 Storage Allocation in Block-Structured Languages

 When an array is declared, the count is incremented by the size of a pointer rather

than by the size of the array itself.

 Follows LIFO – when handling temporaries.

6.9 Storage Allocation

 Runtime environment manages runtime memory requirements for the following

entities:

 Code : It is known as the text part of a program that does not change at runtime. Its

memory requirements are known at the compile time.

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

61

 Procedures : Their text part is static but they are called in a random manner. That is

why, stack storage is used to manage procedure calls and activations.

 Variables : Variables are known at the runtime only, unless they are global or

constant. Heap memory allocation scheme is used for managing allocation and de-

allocation of memory for variables in runtime.

6.9.1 Static Allocation

 In this allocation scheme, the compilation data is bound to a fixed location in the

memory and it does not change when the program executes. As the memory requirement

and storage locations are known in advance, runtime support package for memory

allocation and de-allocation is not required.

6.9.2 Stack Allocation

 Procedure calls and their activations are managed by means of stack memory

allocation. It works in last-in-first-out (LIFO) method and this allocation strategy is very

useful for recursive procedure calls.

6.9.3 Heap Allocation

 Variables local to a procedure are allocated and de-allocated only at runtime. Heap

allocation is used to dynamically allocate memory to the variables and claim it back when

the variables are no more required. Except statically allocated memory area, both stack

and heap memory can grow and shrink dynamically and unexpectedly. Therefore, they

cannot be provided with a fixed amount of memory in the system.

Figure 6.2 Memory Allocation

 As shown in the image above, the text part of the code is allocated a fixed amount of

memory. Stack and heap memory are arranged at the extremes of total memory allocated

to the program. Both shrink and grow against each other.

Parameter Passing

 The communication medium among procedures is known as parameter passing. The

values of the variables from a calling procedure are transferred to the called procedure by

some mechanism. Before moving ahead, first go through some basic terminologies

pertaining to the values in a program.

r-value

 The value of an expression is called its r-value. The value contained in a single variable

also becomes an r-value if it appears on the right-hand side of the assignment operator. r-

values can always be assigned to some other variable.

l-value

 The location of memory (address) where an expression is stored is known as the l-

value of that expression. It always appears at the left hand side of an assignment operator.

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

62

For example:

day = 1;

week = day * 7;

month = 1;

year = month * 12;

 From this example, we understand that constant values like 1, 7, 12, and variables

like day, week, month, and year, all have r-values. Only variables have l-values, as they

also represent the memory location assigned to them.

For example:

7 = x + y;

is an l-value error, as the constant 7 does not represent any memory location.

Formal Parameters

 Variables that take the information passed by the caller procedure are called formal

parameters. These variables are declared in the definition of the called function.

Actual Parameters

 Variables whose values or addresses are being passed to the called procedure are

called actual parameters. These variables are specified in the function call as arguments.

Example:

fun_one()

{

int actual_parameter = 10;

call fun_two(int actual_parameter);

}

fun_two(int formal_parameter)

{

print formal_parameter;

}

 Formal parameters hold the information of the actual parameter, depending upon the

parameter passing technique used. It may be a value or an address.

Pass by Value

 In pass by value mechanism, the calling procedure passes the r-value of actual

parameters and the compiler puts that into the called procedure‟s activation record.

Formal parameters then hold the values passed by the calling procedure. If the values

held by the formal parameters are changed, it should have no impact on the actual

parameters.

Pass by Reference

 In pass by reference mechanism, the l-value of the actual parameter is copied to the

activation record of the called procedure. This way, the called procedure now has the

address (memory location) of the actual parameter and the formal parameter refers to the

same memory location. Therefore, if the value pointed by the formal parameter is changed,

the impact should be seen on the actual parameter, as they should also point to the same

value.

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

63

Pass by Copy-restore

 This parameter passing mechanism works similar to „pass-by-reference‟ except that

the changes to actual parameters are made when the called procedure ends. Upon

function call, the values of actual parameters are copied in the activation record of the

called procedure. Formal parameters, if manipulated, have no real-time effect on actual

parameters (as l-values are passed), but when the called procedure ends, the l-values of

formal parameters are copied to the l-values of actual parameters.

Example:

int y; calling_procedure()

{

y = 10;

copy_restore(y); //l-value of y is passed printf y; //prints 99

}

copy_restore(int x)

{

x = 99; // y still has value 10 (unaffected) y = 0; // y is now 0

}

 When this function ends, the l-value of formal parameter x is copied to the actual

parameter y. Even if the value of y is changed before the procedure ends, the l-value of x is

copied to the l-value of y, making it behave like call by reference.

Pass by Name

 Languages like Algol provide a new kind of parameter passing mechanism that works

like preprocessor in C language. In pass by name mechanism, the name of the procedure

being called is replaced by its actual body. Pass-by-name textually substitutes the

argument expressions in a procedure call for the corresponding parameters in the body of

the procedure so that it can now work on actual parameters, much like pass-by-reference.

Summary

 Symbol table also called Book Keeping.

 Each entry in the Symbol table is a pair of the form Name and Information.

 Information are entered into the Symbol table during Lexical and Syntactic phases.

 AVAILABLE is a pointer which indicates the beginning of the empty portion of the

Array.

 Stack pointer is used to point a particular position an activation record.

 LIFO mechanism is using in handling temporaries.

 Symbol tables are mostly implemented as hash tables.

 The source code symbol itself is treated as a key for the hash function.

 The return value from hash table is the information about the symbol.

Question

1. Explain the contents of Symbol Table.

2. Describe the data structures for Symbol table.

3. Explain the Stack allocation scheme.

4. Write note on Storage Allocation in Block structure Language.

5. Briefly explain

a. Common Data area.

b. Equivalence Data area.

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

64

INTERMEDIATE CODE GENERATION

8.6 Introduction

 A source code can directly be translated into its target machine code, then why at all

we need to translate the source code into an intermediate code which is then translated to

its target code? Let us see the reasons why we need an intermediate code.

Figure 7.1 Role of Intermediate code

 If a compiler translates the source language to its target machine language without

having the option for generating intermediate code, then for each new machine, a full

native compiler is required.

 Intermediate code eliminates the need of a new full compiler for every unique machine

by keeping the analysis portion same for all the compilers. The second part of compiler,

synthesis, is changed according to the target machine.

 It becomes easier to apply the source code modifications to improve code performance

by applying code optimization techniques on the intermediate code.

8.7 Intermediate Representation

 Intermediate codes can be represented in a variety of ways and they have their own

benefits.

8.7.1 High Level IR - High-level intermediate code representation is very close to the

source language itself. They can be easily generated from the source code and we can

easily apply code modifications to enhance performance. But for target machine

optimization, it is less preferred.

8.7.2 Low Level IR - This one is close to the target machine, which makes it suitable for

register and memory allocation, instruction set selection, etc. It is good for machine-

dependent optimizations.

There are 3 types of intermediate representations discussed below,

(i) Post Fix

(ii) Syntax tree

(iii) 3-Address code, Quadruples and Triples.

8.8 Implementation of Intermediate code generator

 Intermediate codes are machine independent codes, but they are close to machine

instruction.

 The given program in source language is converted to an equivalent program in an

intermediate language, by the intermediate code generator.

 Intermediate languages can many different languages, and designer of compiler

decides this intermediate language.

 Postfix notation can be used as an intermediate language

 Syntax tree can be used as an intermediate language.

 Three address code (Quadruples)

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

65

 Quadruples are close to machine instruction. But they are not machine instructions.

 Some programming languages have well defined intermediate languages.

 Java  java virtual machine.

 Prolog  warren obstruct machine.

In fact, there are byte code emulators to execute instructions in these intermediate

languages.

8.8.1 Postfix: (Reverse Polish or Postfix Polish)

 Places the operator at the right end.

Examples:

S.No Infix Postfix

1 a+b ab+

2 (a+b)*c ab+c*

3 a*(b+c) abc+*

4 (a+b)*(c+d) ab+cd+*

5 If a then if c-d then a+c else a*c else a+b acd-ac+ac*? ab+?

8.8.1.1 Evaluation of postfix expressions

 To evaluate the postfix expression, a stack is used.

 The general strategy is to scan the postfix code left to right.

E.g.:

 Consider ab+c*, to evaluate 13+5*

 The actions are,

1. stack1

2. stack 3

3. Add the two topmost elements, pop them off the stack and then stack the result 4.

4. stack 5

5. Multiply the two topmost elements pop them off the stack and then stack the result

20.

The syntax directed translation scheme for a simple grammar is given by,

Production Semantic action

1. E -> E(1)0pE(2) E.code := E(1).code || E(2).code|| „op‟

2. E -> (E(1)) E.code := E(1).code

3. E -> id E.code := id

Note: Parenthesized expression is the same as the unparenthesized expression.

The program fragment corresponding to the above semantic actions are

 Production Program Fragment

 E -> E(1) OP E(2) { Print op }

 E -> E(1) {}

 E -> id {Print id}

The sequence of moves for a+b*c

1. shift a

2. reduce by E -> id and print a

3. shift +

4. shift b

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

66

5. reduce by E -> id and print b

6. shift *

7. shift c

8. reduce by E-> id and print c

9. reduce by E -> E op E and print +

10. reduce by E -> E op E and print *

8.8.2 Parse tree and Syntax Tree:

 If a tree in which each leaf represents an operand and each interior node an operator.

E.g.:

 (i) a* (b+c)/d [abc+*d/]

 (ii) if a=b then a:=c+d else b:=c-d

Syntax directed translation scheme for syntax trees:

8.8.3 Three address code:

The general form is, A: =B op c

 Where A,B, C are either programmer defined names, constructor or compiler generated

temporary names. Op stands for any operator.

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

67

 usually the “Three address code” contains address two for the operand and one for the

result

Additional 3-address statements:

1. Assignment statements of the form A:=B op C (binary arithmetic logical operator)

2. Assignment instruction, A:=op B (Unary operator) (A:=B B is assigned to A)

3. Unconditional: goto L.

4. Conditional : if A reop B goto L (relational op)

5. param A and call p,n

Eg: Procedure call:

 Param A1

 -

 -

 Param An

 Call p,n

6. Indexed assignment : A:=B[I] (Location (array))

7. Pointer and address assignments,

A: = addr B(Address of B), A= *B(Value at B) and *A = B

 The 3-address statement is an obstruct form of intermediate code. These statements

can be implemented by either of the following way,

 Quadruples

 Triples

 Indirect Triples

8.8.3.1 Quadruples

 record structure has 4 fields,

Op, arg1, arg2, result

Op -> contains an internal code for the operator

 Eg: -> A: = B op C puts B in ARG1, C IN ARG2 And A in RESULT.

 Conditional and unconditional jump put the target label in RESULT.

E.g.:

 A: = -B * (C+D)

The 3-address code will be

 T1:= -B

T2:= C+D

T3:= T1 *T2

A: = T3

The Quadruples representation be

8.8.3.2 Triples

 Used to avoid temporary names into the symbol table.

 Here only 3 Fields are used

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

68

 Parenthesized numbers are used to represent pointers into the triple structure

E.g.:

 A: = -B * (C+D)

3-address code: T1:= -B

 T2:=C+D

 T3:=T1 * T2

A: = T3

8.8.3.3 Indirect Triples

 Listing pointers to triples, rather than listing the triples themselves.

E.g.:

A: = -B * (C+D)

8.9 Translation of Assignment Statements

 Translation of basic programming – language constructs into code of this form.

8.9.1 Assignment statements with Integer Types

  Statements involving only integer values

Example:

A -> id: = E Consists of code to evaluate E into sometimes operators

E -> E+E | E*E | -E | (E)| id

A means assignment statement.

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

69

8.9.2 The abstract Translation Scheme

 Abstractly, the translation of E to be structure with two fields:

1. E.PALCE, hold the value of the expression.

2. E.CODE, sequence of 3-address statements evaluating the expressions.

 A .CODE, which is a 3-address code to execute the assignment.

 Id . PLACE, to denote the name corresponding to this instance of taken id.

 To create new temporary name, NEWTEMP () is used to return an appropriate name.

Example:

8.9.3 More Specified Form Of The Translation Scheme

 We shall use a procedure GEN (A:=B+C) to emit the three address statement A:=B+C

with actual values substituted for A,B and C. We can modify the above scheme in the

following way

8.9.4 Assignment Statement With Mixed Type

 Bottom up parse.

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

70

8.10 Boolean Expression

8.10.1 3-Address statements for Boolean Expressions:

 The branching statements of the form:

 goto L

 if A goto L

 if A relop B goto L

 Here A and B is simple variables or constants, L is a quadruple Label and relop is any

of <, ≤, = ≠, or ≥….

 Consider the implementation of Boolean expression using 1 to denote TRUE and 0 to

denote FALSE.

 Expression will be evaluated from left to right.

E.g.:

A relational expression if A<B then 1 else 0, its 3-address code will be,

(1) if A<B goto (4)

(2) T : = 0

(3) Goto (5)

(4) T:=1

8.10.2 3-address code for array reference:

 We assume static allocation of arrays, where subscripts range from 1 to some limit

known at compile time.

 Array elements are taken to require one word each.

 Let A is A[1], A[2]…., if addr(A) denotes the 1st word of block, A[1], then A[i] is in

location addr (A)+i-1.

 If there were 4 bytes per word then the 3-address statement for A[i] is

 T1:=4*i

 T2:=addr (a)-4

 T3:= T2 [T1]

Summary

 The complexity of code generated by the intermediate code generator is in between the

source code and the machine code.

 Intermediate is in form of 3-Address code.

 Triples is to avoid temporary name into the Symbol table.

 Intermediate codes are machine independent codes, but they are close to machine

instruction.

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

71

 The source language is converted to an equivalent program in an intermediate

language, by the intermediate code generator.

Questions:

1. Explain intermediate code representation.

2. Draw the Syntax tree for the following,

I.a+b*(c*a)-(c/a)

II.if a<b then c=b else c=a

III.a-b*a+c

3. Write the postfix notation for the following,

I.a+b*(c*a)-(c/a)

II.if a<b then c=b else c=a

III.a-b*a+c

4. Describe 3-Address code.

5. Explain Abstract Translation Scheme.

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

72

CODE OPTIMIZATION

8.11 Introduction

 Optimization is a program transformation technique, which tries to improve the code

by making it consume less resources (i.e. CPU, Memory) and deliver high speed.

1. The term “code optimization” refers to techniques, a compiler can employ in an

attempt to produce a better object language program than the most obvious for a given

source program.

2. The quality of the object program is generally measured by its size (for small

computation) or its running time (for large computation).

3. It is theoretically impassible for a compiler to produce the best possible object program

for every source program under any reasonable cast function.

4. The accurate term for “code optimization” is ”code improvement”.

5. There are many aspects to code optimization.

(i) Cast

(ii) Quick & straight forward translation (time).

8.12 The Principal Sources Of Optimization

 The code optimization techniques consist of detecting patterns in the program and

replacing these patterns by equivalent but more efficient construct.

 Patterns may be local or global and replacement strategy may be machine dependent

or machine dependent.

8.12.1 Inner Loops

 “90-10” rule states that 90% of the time is spent in 10% of the code. Thus the most

heavily traveled parts of a program, the inner loops, are an obvious target for

optimization.

8.12.2 Language Implementation Details Inaccessible To the User:

The optimization can be done by

1) Programmer- Write source program (user can write)

2) Compiler -e.g.: array references are made by indexing, rather than by pointer or

address calculation prevents the programmer from dealing with offset calculations in

arrays.

8.13 Further Optimizations:

 The important sources of optimization are the identification of common sub expression

and replacement of run time computation by compile time computation.

 The term constant folding is used for the latter optimization.

Example:

 A [i+1]:=B [i+1] is easier.

 J: =i+1

 A[j]:=B[j]

 There are three types of code optimization

I. Local optimization-performed within a straight line and no jump.

II. Loop optimization

III. Data flow analysis-the transmission of useful information from one part of the

program to another.

Note:

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

73

Optimization is mainly depending on the algorithm

 In optimization, high-level general programming constructs are replaced by very

efficient low-level programming codes. A code optimizing process must follow the three

rules given below:

1. The output code must not, in any way, change the meaning of the program.

2. Optimization should increase the speed of the program and if possible, the program

should demand less number of resources.

3. Optimization should itself be fast and should not delay the overall compiling process.

Efforts for an optimized code can be made at various levels of compiling the process.

1. At the beginning, users can change/rearrange the code or use better algorithms to

write the code.

2. After generating intermediate code, the compiler can modify the intermediate code by

address calculations and improving loops.

3. While producing the target machine code, the compiler can make use of memory

hierarchy and CPU registers.

 Optimization can be categorized broadly into two types : machine independent and

machine dependent.

8.13.1 Machine-independent Optimization

 In this optimization, the compiler takes in the intermediate code and transforms a part

of the code that does not involve any CPU registers and/or absolute memory locations. For

example:

do

{

item =10;

value = value + item;}while(value<100);

This code involves repeated assignment of the identifier item, which if we put this way:

Item =10;do

{

value = value + item;} while(value<100);

should not only save the CPU cycles, but can be used on any processor.

8.13.2 Machine-dependent Optimization

 Machine-dependent optimization is done after the target code has been generated and

when the code is transformed according to the target machine architecture. It involves

CPU registers and may have absolute memory references rather than relative references.

Machine-dependent optimizers put efforts to take maximum advantage of memory

hierarchy.

8.13.3 Basic Blocks

 Source codes generally have a number of instructions, which are always executed in

sequence and are considered as the basic blocks of the code. These basic blocks do not

have any jump statements among them, i.e., when the first instruction is executed, all the

instructions in the same basic block will be executed in their sequence of appearance

without losing the flow control of the program.

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

74

 A program can have various constructs as basic blocks, like IF-THEN-ELSE, SWITCH-

CASE conditional statements and loops such as DO-WHILE, FOR, and REPEAT-UNTIL,

etc.

8.13.3.1 Basic Block Identification

 We may use the following algorithm to find the basic blocks in a program:

1. Search header statements of all the basic blocks from where a basic block starts:

i. First statement of a program.

ii. Statements that are target of any branch (conditional/unconditional).

iii. Statements that follow any branch statement.

2. Header statements and the statements following them form a basic block.

3. A basic block does not include any header statement of any other basic block.

 Basic blocks are important concepts from both code generation and optimization point

of view.

 Basic blocks play an important role in identifying variables, which are being used more

than once in a single basic block. If any variable is being used more than once, the

register memory allocated to that variable need not be emptied unless the block finishes

execution.

Control Flow Graph

 Basic blocks in a program can be represented by means of control flow graphs. A

control flow graph depicts how the program control is being passed among the blocks. It is

a useful tool that helps in optimization by locating any unwanted loops in the program.

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

75

8.14 Loop Optimization

 Most programs run as a loop in the system. It becomes necessary to optimize the loops

in order to save CPU cycles and memory. Loops can be optimized by the following

techniques:

 Invariant code : A fragment of code that resides in the loop and computes the same

value at each iteration is called a loop-invariant code. This code can be moved out of

the loop by saving it to be computed only once, rather than with each iteration.

 Induction analysis : A variable is called an induction variable if its value is altered

within the loop by a loop-invariant value.

 Strength reduction : There are expressions that consume more CPU cycles, time, and

memory. These expressions should be replaced with cheaper expressions without

compromising the output of expression. For example, multiplication (x * 2) is expensive

in terms of CPU cycles than (x << 1) and yields the same result.

8.15 Dead-code Elimination

 Dead code is one or more than one code statements, which are:

 Either never executed or unreachable,

 Or if executed, their output is never used.

Thus, dead code plays no role in any program operation and therefore, it can simply be

eliminated.

8.15.1 Partially Dead Code

 There are some code statements whose computed values are used only under certain

circumstances, i.e., sometimes the values are used and sometimes they are not. Such

codes are known as partially dead-code.

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

76

 The above control flow graph depicts a chunk of program where variable „a‟ is used to

assign the output of expression „x * y‟. Let us assume that the value assigned to „a‟ is

never used inside the loop. Immediately after the control leaves the loop, „a‟ is assigned the

value of variable „z‟, which would be used later in the program. We conclude here that the

assignment code of „a‟ is never used anywhere, therefore it is eligible to be eliminated.

 Likewise, the picture above depicts that the conditional statement is always false,

implying that the code, written in true case, will never be executed, hence it can be

removed.

8.15.2 Partial Redundancy

 Redundant expressions are computed more than once in parallel path, without any

change in operands; whereas partial-redundant expressions are computed more than once

in a path, without any change in operands. For example,

Loop-invariant code is partially redundant and can be eliminated by using a code-motion

technique.

 Another example of a partially redundant code can be:

If (condition)

{

a = y OP z;

}

else

{

...

}

c = y OP z;

 We assume that the values of operands (y and z) are not changed from assignment of

variable a to variable c. Here, if the condition statement is true, then y OP z is computed

twice, otherwise once. Code motion can be used to eliminate this redundancy, as shown

below:

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

77

If (condition)

{

...

tmp = y OP z;

a = tmp;

...

}

else

{

...

tmp = y OP z;

}

c = tmp;

Here, whether the condition is true or false; y OP z should be computed only once.

8.16 Code Optimization

8.16.1 Code Motion:

 An important source of modifications of the code is called code motion, where we take

a computation that yields the same result independent of the number of times through

the loop and place if before the loop.

8.16.2 Induction Variable:

 If some sequence of statements from arithmetic progressions, we say such identifiers

as induction variables.

 When two or more induction variable is a loop we an opportunity to get rid of all but

one, and we call this process, induction variable elimination.

E.g.:

 While (I <= 20) {for i->1->20}

 T1=4*I {t1->4, 8,. . . .} AP

8.16.3 Reduction In Strength:

 The replacement of an expensive operation by a cheaper one is called reduction in

strength.

 (T1:=4*I)= (T1=T1+4)

8.17 The Dag Representation Of Basic Blocks

 A useful data structure for automatically analyzing basic blocks is a directed acyclic

graph (DAG).

 DAG is a directed graph with no cycle.

 Constructing a DAG from 3 address statement is a good way of determining common

sub expressions.

8.17.1 DAG with following labels nodes:

 Leaves are labeled by unique identifiers.

 Interior nodes are labeled by an operator symbol.

 Nodes are also optionally given an extra set of identifiers for labels.(to store value)

8.17.2 Advantages

 We can detect common sub expression.

 We can determine value used in the block.

 Compute values used outside the block.

 To reconstruct a simplified list of quadruples.

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

78

Summary

 Code optimization are called code improvement.

 The aspect to Code is cost and Time

 Constant timing is used for later optimization.

 Optimization is mainly depends on the algorithm

 Data structure to analyze basic blocks DAG.

 DAG is the Direct Graph with no cycles.

 DAG is useful to determine common sub expressions.

Questions

1. Explain the principle sources of Optimization.

2. Describe Loop Optimization.

3. Write note on reduction and Strength.

4. Describe DAG representation.

5. State the properties and uses of DAG.

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

79

9. CODE GENERATION

9.1 Introduction

 Code generation can be considered as the final phase of compilation. Through post

code generation, optimization process can be applied on the code, but that can be seen as

a part of code generation phase itself. The code generated by the compiler is an object

code of some lower-level programming language, for example, assembly language. We have

seen that the source code written in a higher-level language is transformed into a lower-

level language that results in a lower-level object code, which should have the following

minimum properties:

1. It should carry the exact meaning of the source code.

2. It should be efficient in terms of CPU usage and memory management.

 We will now see how the intermediate code is transformed into target object code

(assembly code, in this case).

9.2 Problems in Code Generation

 What instruction should we generate?

 There are variety of ways –which way is select.

 In what order should we perform computations?

 Picking best is difficult.

 What Register should we use?

 E.g.: - Certain machine requires register-pairs.

9.3 A simple code generator

 For each operator in a quadruple there is a corresponding machine code operator.

 Computed result can be left in registers as long as possible, storing them only

 If their registers is needed for another computation.

 Just before a procedure call, jump (or) labeled statement.

 Everything must be stored just before the end of a basic block.

Next_Use Information:

 To make more informed decisions concerning register allocation we compute the next

uses of each name in a quadruple.

Use is defined as,

E.g.: int n=5;

int i, j;

For (i=0; i<5; i++)

 For (j=i+1; j<5; j++)

 Computation.

The final result is stored.

9.4 Descriptor

 The code generator has to track both the registers (for availability) and addresses

(location of values) while generating the code. For both of them, the following two

descriptors are used

Register descriptor: Register descriptor is used to inform the code generator about the

availability of registers. Register descriptor keeps track of values stored in each register.

Whenever a new register is required during code generation, this descriptor is consulted

for register availability.

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

80

Address descriptor: Values of the names (identifiers) used in the program might be stored

at different locations while in execution. Address descriptors are used to keep track of

memory locations where the values of identifiers are stored. These locations may include

CPU registers, heaps, stacks, memory or a combination of the mentioned locations.

Code generator keeps both the descriptor updated in real-time. For a load statement, LD

R1, x, the code generator:

 updates the Register Descriptor R1 that has value of x and

 updates the Address Descriptor (x) to show that one instance of x is in R1.

Register Allocation & Assignment:

 There are various strategies for deciding what names in a program should reside in

registers, i.e. register allocation & in which register each should reside i.e. register

assignment.

Advantage: Simplifies the design of a compiler.

Disadvantage: When strictly handled, it uses registers inefficiently.

Global Register Allocation

 To assign registers to frequently used variables and keep their registers consistent

across block boundaries (globally).

 Usage Counts: Reducing the usage of variables repeatedly in a loop and save cost and

time.

Register Assignments For Outloops:

 The above said same procedure is also followed here.

 When the outer and the inner loop have to access the same register, then the register

is declare outside to both the loops.

9.5 The Basics of Code Generation

 Basic blocks comprise of a sequence of three-address instructions. Code generator

takes these sequence of instructions as input.

Note: If the value of a name is found at more than one place (register, cache, or memory),

the register‟s value will be preferred over the cache and main memory. Likewise, cache‟s

value will be preferred over the main memory. Main memory is barely given any

preference.

getReg : Code generator uses getReg function to determine the status of available registers

and the location of name values. getReg works as follows:

 If variable Y is already in register R, it uses that register.

 Else if some register R is available, it uses that register.

 Else if both the above options are not possible, it chooses a register that requires

minimal number of load and store instructions.

 For an instruction x = y OP z, the code generator may perform the following actions.

Let us assume that L is the location (preferably register) where the output of y OP z is to

be saved:

 Call function getReg, to decide the location of L.

 Determine the present location (register or memory) of y by consulting the Address

Descriptor of y. If y is not presently in register L, then generate the following

instruction to copy the value of y to L:

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

81

MOV y‟, L

where y‟ represents the copied value of y.

 Determine the present location of z using the same method used in step 2 for y and

generate the following instruction:

OP z‟, L

where z‟ represents the copied value of z.

 Now L contains the value of y OP z, that is intended to be assigned to x. So, if L is a

register, update its descriptor to indicate that it contains the value of x. Update the

descriptor of x to indicate that it is stored at location L.

 If y and z has no further use, they can be given back to the system.

Other code constructs like loops and conditional statements are transformed into

assembly language in general assembly way.

9.5.1 The Code-Generation Algorithm:

1. Invoke a function GETREG ().

2. Consult the address descriptor.

3. Generate the instruction & update the address descriptor.

4. If there is no next use then the result is obtained. Then those registers no longer will

contain the variables.

9.6 Code Generation from DAG’s

9.6.1 Directed Acyclic Graph

 Directed Acyclic Graph (DAG) is a tool that depicts the structure of basic blocks, helps

to see the flow of values flowing among the basic blocks, and offers optimization too. DAG

provides easy transformation on basic blocks. DAG can be understood here:

1. Leaf nodes represent identifiers, names, or constants.

2. Interior nodes represent operators.

3. Interior nodes also represent the results of expressions or the identifiers/name where

the values are to be stored or assigned.

Example:

t0 = a + b

t1 = t0 + c

d = t0 + t1

9.6.2 Steps involved in constructing machine using DAG

1. Rearranging the order:

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

82

 T1:=A+B;

 T2:=C+D;

 T3:=E-T2;

 T4:=T1-T3;

Called a heuristic ordering for DAG‟S.

2. Optimal ordering of trees:

 The DAG representation of a quadruple is a tree and if should be in a designed

register.

 Using labeling algorithm- we can find the node and the leaf.

 Multi register and algebraic properties are made.

 Sub expressions are made i.e. partition of trees into sub trees.

9.7 Peephole Optimization

 This optimization technique works locally on the source code to transform it into an

optimized code. By locally, we mean a small portion of the code block at hand. These

methods can be applied on intermediate codes as well as on target codes. A bunch of

statements is analyzed and are checked for the following possible optimization

9.7.1 Redundant Instruction Elimination

At source code level, the following can be done by the user:

 At compilation level, the compiler searches for instructions redundant in nature.

Multiple loading and storing of instructions may carry the same meaning even if some of

them are removed. For example:

 MOV x, R0

 MOV R0, R1

 We can delete the first instruction and re-write the sentence as:

MOV x, R1

9.7.2 Unreachable Code

 Unreachable code is a part of the program code that is never accessed because of

programming constructs. Programmers may have accidently written a piece of code that

can never be reached.

Example:

void add_ten(int x)

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

83

{

return x + 10;

printf(“value of x is %d”, x);

}

In this code segment, the printf statement will never be executed, as the program control

returns back before it can execute, hence printf can be removed.

9.7.3 Flow of Control Optimization

 There are instances in a code where the program control jumps back and forth without

performing any significant task. These jumps can be removed. Consider the following

chunk of code:

...

MOV R1, R2

GOTO L1

...

L1 : GOTO L2

L2 : INC R1

In this code, label L1 can be removed, as it passes the control to L2. So instead of jumping

to L1 and then to L2, the control can directly reach L2, as shown below:

...

 MOV R1, R2

GOTO L2

... L2 : INC R1

9.7.4 Algebraic Expression Simplification

 There are occasions where algebraic expressions can be made simple. For example, the

expression a = a + 0 can be replaced by a itself and the expression a = a + 1 can simply be

replaced by INC a.

Strength Reduction

 There are operations that consume more time and space. Their „strength‟ can be

reduced by replacing them with other operations that consume less time and space, but

produce the same result.

 For example, x * 2 can be replaced by x << 1, which involves only one left shift. Though

the output of a * a and a2 is same, a2 is much more efficient to implement.

Summary

 Code generation can be considered as the final phase of compilation.

 The output of the code generator is machine code.

 The address descriptor is used to track the location in the memory.

 DAG representation made the code generation simple.

 If the value of a name is found at more than one place, the register‟s value will be

preferred over the cache and main memory.

 Redundancy in loads and stores are reduced in peephole optimization.

Question

1. Explain register descriptor and address descriptor.

2. Write note on GETREG ().

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

84

3. Explain heuristic ordering with an example.

4. Explain Peephole optimization.

MULTIPLE CHOICE QUESTIONS

1. A ------------ is a program that takes as input a program written in one language

(source language) and produces as output a program in another language (object

language).

 a)translator b)assembler c)compiler d)interpreter Ans:a

2. If the source language is high-level language and the object language is a low-level

language(assembly or machine), then such a translator is called as a -------------.

 a)translator b)assembler c)compiler d)interpreter Ans:c

3. An interpreter is a program that directly executes an---------- code.

 a)source b)object c)intermediate d)subject Ans:c

4. If the source language is an assembly language and the target language is a machine

language, then the translator is called an -----------------.

 a)translator b)assembler c)compiler d)interpreter Ans:b

5. ------------- is used for translators that take programs in one high-level language into

equivalent programs in another high-level language.

 a)Preprocessor b)Compiler c)Assembler d)Translator Ans:a

6. A macro is a ------------ replacement capability.

 a)text b)image c)language d)none Ans:a

7. The two aspects of macros are ----------- and -------------.

 a)description, definition b)description, use

 c) definition, use d) definition, function Ans:c

8. A compiler takes as input a source program and produces as output an equivalent

sequence of ----------------.

a) user program b)object language

 c)machine instructions d)call Ans:c

9. The compilation process is partitioned into a series of sub processes called -------------

 a)phases b)sub program c)module d)subsets Ans:a

10. The first phase of the compiler is also called as ------------.

 a)scanner b)parser c)tokens d)macro Ans:a

11. The output of the lexical analyzer are a stream of ------------.

 a)instructions b)tokens c)values d)inputs Ans:b

12. Tokens are grouped together into syntactic structure called as an -------------.

 a)expression b)tokens c)instructions d)syntax Ans:a

13. Syntactic structure can be regarded as a tree whose leaves are the ------------.

 a)scanner b)parser c)tokens d)macro Ans:c

14. ------------- phase designed to improve the intermediate code.

 a)Code optimization b) Code Generation

 c) Intermediate code generator d) Syntax Analyzer Ans:a

15. Data structure used to record the information is called a --------- table.

 a)syntactic b)symbol c)value d)tokens Ans:b

16. In an implementation of a compiler, portions of one or more phases are combined into

amodule called a --------.

 a)pass b) parser c)scanner d)set Ans:a

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

85

17. --------------- is a special kind of notation used to define the language.

a) Expression b) Proper Expression

c) Irregular Expression d) Regular Expression Ans:d

18. The ------------- phase receives optimized intermediate codes and generates the code for

execution.

 a)lexical analyzer b)syntax analyzer

 c)code optimizer d)code generator Ans:d

19. A compiler may run on one machine and produce object code for another machine,

such a compiler is called a -------------.

a) cross compiler b)medium compiler

 c) back compiler d)mixed compiler Ans:a

20. The main function of lexical analyzer is to read a --------------.

a) source program b)object program

 c)intermediate code d)sub Ans:a

21. One character is read at a time and translated into a sequence of primitive units called

 a)instructions b)tokens c)values d)numbers Ans:b

22. Which is not a token?

 a)operator b)instructions c)keywords d)identifier Ans:b

23. To recognize the tokens in the input stream--------------------- and ------------ are

convenient ways of designing recognizers.

a) transition diagrams, finite automata

b) transaction diagram, finite automata

 c) transition diagram, NFA

 d) transaction diagram, NFA Ans:a

24. When the lexical analyzer and parser are in the same pass, the lexical analyzeracts as

a ------.

 a)subroutine b)stack c)analyzer d)parser Ans:a

25. It is easy to specify the structure of tokens than the ------------ structure of the

program.

 a)syntactic b)syntax c)both (a) and (b) d)main Ans:a

26. ------------ is used to define a language.

a) Lexical Analyzer b)Parser

 c)Regular Expression d)Identifier Ans:c

27. A string is a finite sequence of -----------.

 a)symbols b)tokens c)instructions d) passes Ans:a

28. The concatenation of any string with an empty string is the -----------.

 a)string itself b)null c)symbol d)alphabet Ans:a

29. ---------------is used to describe tokens and identifiers.

a) Lexical Analyzer b)Parser

 c)Regular Expression d)Random Ans:c

30. The symbol table keeps account of the attributes of the ------------------.

 a) identifiers b)values c)numbers d)text Ans:a

31. A ------------------ or finite automata for a language is a program that takes as input a

string x and answers „yes‟ if x is a sentence of the language L „no‟ otherwise.

 a)recognizer b)parser c)lexical analyzer d)identifier Ans:a

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

86

32. DFA stands for ------------------

 a) Deterministic Finite set Automata b) Deterministic Finite Automata

 c) Non Deterministic Finite Automata d) Non Deterministic Finite set Automata

 Ans:b

33. NFA stands for ------------------

a) Deterministic Finite set Automata

b) Deterministic Finite Automata

 c) Non Deterministic Finite Automata

 d) Non Deterministic Finite set Automata Ans:c

34. A NFA should have ------------------ start state.

 a)1 b)0 c)finite d)infinite Ans:a

35. The generalized transition diagram for a regular expression is called ------------- .

a) finite automaton b)infinite automaton

 c)regular automaton c)irregular automaton Ans:a

36. --------------- is a tool that automatically generating lexical analyzer.

 a)LEX b)HEX c)SLR d)CLR Ans:a

37. LEX can build from its input, a lexical analyzer that behaves roughly like a ----------.

a) Finite Automaton b)Deterministic Finite Automata

c)Non-Deterministic Finite Automata d)Finite Set Ans:a

38. --------------- are used by lexical analyzers to recognize tokens.

a) Line Graphs b)Bar Charts

 c)Transition Diagrams d)Circle Charts Ans:c

39. In CFG ,the basic symbols of the language are called -------------.

 a)terminals b)non-terminals c)symbols d)digits Ans:a

40. Tokens are ------------.

 a)terminals b)non-terminals c)symbols d)digits Ans:a

41. Special symbols and syntactic variables are --------------.

 a)terminals b)non-terminals c)symbols d)lines Ans:b

42. The symbol ==> means ----------------.

 a)derives in one step b)derives in zero or more steps

 c) derives in one or more steps d)does not derive Ans:a

43. The symbol =*=> means ----------------.

 a)derives in one step b)derives in zero or more steps

 c) derives in one or more steps d)does not derive Ans:b

44. The symbol =+=> means ----------------.

 a)derives in one step b)derives in zero or more steps

 c) derives in one or more steps d) does not derive Ans:c

45. A graphical representation for derivations that filter out the choice regarding

replacement order is called the -----------------.

 a) parse tree b) graph tree c)syntax tree d) symbol tree Ans:a

46. A parse tree consists of a finite set of labeled ---------- connected by -----------.

a) nodes, edges b)edges, nodes

 c)terminals, lines d)lines, terminals Ans:a

47. A parser for Grammar G is a program that takes as input string W and produces as

output is --------------- for W.

 a) parse tree b) slr c) error message d) string Ans:a

48. If W is a sentence of G, or an ------------- indicating that W is not a sentence of G.

 a) parse tree b) slr c) error message d) string Ans:c

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

87

49. Syntax Analyzer is also called as a -------------.

 a) parser b) lexer c) converter d) inverter Ans:a

50. Bottom-up parserbuild the parse trees from the bottom ---------- to the top ---------.

a) leaves, root b) root, leaves

c) none d) combination of leaves and root Ans:b

51. In both parsing type ,the cases the input to the parser is being scanned from -----------

-, one symbol at a time.

 a) left to right b) right to left c) middle of a string d) end Ans:a

52. In a top-down parser, the starting --------------- is expanded to derive the given input

string.

 a) terminal b) 3letter c) digit d) non-terminal Ans:d

53. The bottom-up parsing method is called --------------- parsing.

 a)shift reduce b) recursive decent c) bottom-up d) top-down Ans:a

54. The top-down parsing is called ------------ parsing.

 a)shift reduce b) recursive decent c) bottom-up d) top-down Ans:b

55. An operator-precedence parser is one kind of ------------- parser.

 a) shift reduce b) descent c)bottom-up d)top-down Ans:a

56. Predictive parser is one kind of --------------- parser.

 a)shift reduce b)recursive descent c)bottom-up d)top-down Ans:b

57. The output of a parser is the representative of a ---------------.

 a) parser tree b) slr c) error message d) tree Ans:a

58. ------------ is a program that produces valid parse trees.

 a)Reader b)Parser c)Writter d)Producer Ans:b

59. A rightmost derivation in reverse is called as ----------- .

 a)reduction b)sequence

 c)reduction sequence d)canonical reduction sequence Ans:a

60. Rightmost derivation is sometimes called ------------- derivations.

 a)canonical b)RMD c)LMD d)low Ans:b

61. ---------- makes grammar suitable for parsing.

 a)Factoring b)Right Factoring c) Left Factoring d) Reverse Factoring Ans:c

62. Left Factoring is a transformation for factoring out the ---- prefixes.

 a)odd b)common c)positive d)negative Ans:b

63. Reverse of a right most derivation is called ------------.

 a)reduction b)handle c)production d)base Ans:b

64. The canonical reduction sequence is obtained by ------.

 a)reduction b)handle c)production d)handle pruning Ans:d

65. Which is not a shift reduce parser action

 a)Shift b)Reduce c)Accept d)go Ans:d

66. If a grammar has no two adjacent non-terminals ,then it is called as an ---------------

grammar.

 a)precedence b)operator c)regular d)irregular Ans:b

67. The parsing table is generally a --------------- dimensional array.

 a) one b) two c) three d)four Ans:b

68. Precedence table can be encoded by ------------ functions.

 a) reduce b) shift c) precedence d) various Ans:c

69. Stack is pushed with --------------- symbol.

 a)$ b)% c)* d)& Ans:a

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

88

70. LR Parser is a -------------- parser.

 a)Bottom-Up b)Top-Down c)reverse d)forward Ans:a

71. LR parser construct a ---------------- type of derivation.

 a)RMD b)MMD c)LMD d)CLR Ans:a

72. LR parser has ------------- components.

 a)2 b)3 c)5 d)1

73. What are the components of LR Parser?

a) Parsing algorithm b) Parsing table construction

 c) both a and b d)Parsing note Ans:c

74. --------------- function is a collection, called canonical collection of LR (0) items.

 a) GOTO b) FIRST c) FOLLOW d) COMPUTE Ans:a

75. The collection of sets of LR (0) item is called ----------------.

 a)SLR b)CLR c)LALR d)DMR Ans:b

76. The SLR table has 2 parts they are ------- and -------------.

 a) action, goto entries b)action, error

 c)error, shift d)action, shift Ans:a

77. The input string is in I/p buffer followed by the right end marker ----------------.

 a)$ b)% c)* d)& Ans:a

78. If Left Recursion is available------------ occurs.

 a) stack b) cycle c) queue d) symbols Ans:b

79. ----------------- keeps the grammar symbols.

 a)Top b) Stack c)Queue d)Bottom Ans:b

80. The ---------- keeps the input string.

 a)input buffer b)output buffer c) stack d)queue Ans:a

81. ------------ directed translation allows subroutines or semantic actions to be attached

to the productions of a context free grammar.

 a)syntax b)semantic c)both d)error Ans:a

82. Syntax directed translation subroutines generate --------------- code.

 a)intermediate b)source c)object d)error Ans:a

83. A syntax directed translation scheme is merely a -------------- grammar.

 a)regular b)context-sensitive c)context-free d)single Ans:c

84. The ------------ action is enclosed in braces.

 a)syntax b)semantic c)both d)error Ans:b

85. Implementation of syntax-directed translators describes an ------------ mapping.

 a)input b)output c)input-output d)parse table Ans:c

86. A compiler – compiler would tie the parser and the semantic action program fragments

together, producing ----------- module.

 a)one b)two c)three d)more than one Ans:a

87. ------------ polish places the operator at the right end.

 a) Postfix b) Prefix c) Both d) Polish Ans:a

88. To evaluate the -------------- expression, a stack is used.

 a) postfix b) prefix c) both d) polish Ans:a

89. The general strategy is to scan the postfix code -------------.

 a)left-right b)right-left c)middle d)end Ans:a

90. If the attributes of the parent depend on the attributes of the children ,then they are

called as ------------- attributes.

 a)made b)discovered c)new d) inherited Ans:d

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

89

91. ------------- is a tree in which each leaf represents an operand and each interior node

an operator.

a) Parser Tree b)Semantic Tree c)Syntax Tree d)Structured Tree Ans:c

92. The properties of an entity are called as --------------.

 a)values b)attributes c)numbers d)digits Ans:b

93. Usually the “Three address code” contains address two for the ---------- and one for the

result.

 a) operand b)operator c)result d) statement Ans:a

94. The --------------- statement is an abstract form of intermediate code.

 a)2-address b)3-address c)Intermediatecode d)address Ans:b

95. Which is not the way of implement the 3-address statement.

a) Quadruples b) Triples c) Indirect Triples d) Parse Tree Ans:d

96. -------------- record structure has 4 fields.

a) Quadruples b) Triples c) Indirect Triples d) Parse Tree Ans:a

97. Parenthesized numbers are used to represent ----------- into the triple structure.

 a)pointer b)stack c)queue d)value Ans:a

98. ---------------- Triples are listing pointers to triples, rather than listing the triples

themselves.

 a)Direct b)Indirect c)Multiple d)New Ans:b

99. ---------------- refers to the location to store the value for a symbol.

 a) value b)place c)code d)number Ans:b

100. ----------- refers to the expression or expressions in the form of three address codes.

 a) value b)place c)code d)number Ans:c

101. ----------- is associating the attributes with the grammar symbols.

 a)rotation b)translation c)transformation d)evolving Ans:b

102. In 3-address code for array reference we assume static allocation of arrays, where

subscripts range from 1 to some limit known at ------------------ time.

 a) compile b) run c) execution d) process Ans:a

103. In Triples uses only 3 ----------------.

 a) fields b) operator c) operand d) instruction Ans:a

104. _____________ is used in the several stages of the compiler.

 a)Table b) Symbol Table c) Records d) Program. Ans:b

105. Information about the name is entered into the symbol table during ____________

and ___________.

a) lexical and syntactic analysis b) lexical and code generation

c) lexical and error handler d) lexical and code optimization. Ans:a

106. Each entry in the symbol table is a pair of the form ______ and _______.

 a) Name and information. b) Name and function.

 c) Name and Data. d) Name and procedures. Ans:a

107. A compiler needs to collect and use information about the names appearing in the

source program. This information is entered into a data structure called a

______________.

 a)Symbol Table b) Lexical analysis

 c) Syntactic analysis d) Records. Ans:a

108. Undeclared name and type incompatibilities in _____________.

 a)Syntactic errors b) Semantic errors

 c) Lexical Phase errors d) Reporting errors. Ans:b

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

90

109. Minimum distance matching in ___________.

 a)Syntactic errors b) Semantic errors

 c) Lexical Phase errors d) Reporting errors Ans:a

110. Minimum distance correction is____________ errors.

 a)Syntactic Phase errors b) Semantic errors

 c) Lexical Phase errors d) Reporting errors. Ans:a

111. Parser discards input symbol until a ____________________ token is encountered.

 a)synchronizing b) Synchronizing

 c) Group d) none. Ans:b

112. The message should not be redundant in ________________.

 a) Syntactic Phase errors b) Semantic errors

 c) Lexical Phase errors d) Reporting errors. Ans:d

113. When an error is detected the reaction of compiler is different,

 a)A system crash

 b)To emit invalid output

 c)To merely quit on the first detected error.

 d)All of the above. Ans:d

114. Two types of data areas _______________.

 a)Common and stack b)Common and equivalence.

 c)Register and stack d)Code and equivalence. Ans:b

115. Hashing meaning______

 a)Variation of searching techniques b)Variation of inserting techniques

 c)Variation of updating techniques. d)Variation of Deleting Techniques. Ans:a

116. An ____________ describing the partition in storage to be allocated for the name.

 a)Pointer b) AVAILABLE c) Offset d) Attributes. Ans:b

117. The simplest way to implement a symbol table is as a ______________ of records, one

 record per name.

 a)Linear array b) Multidimensional array

 c) Rectangular array d) Jagged Array. Ans:a

118. What is the length of identifier for DIMPLE?

 a)5 b) 6 c) 4 d) 3 Ans:b

119. The accurate term for “Code Optimization” is ____________________.

 a)Intermediate Code b) Code Improvement

 c) Latter Optimization d) Local Optimization. Ans:b

120. The quality of the object program is generally measured by its __________.

 a)Cost b) Time

 c) Size or Its running time d) Code Optimization. Ans:C

121. The code optimization techniques consist of detecting __________ in the program and

 __________ these patterns.

 a)Errors and replacing b) Patterns and replacing
 c) Errors and editing d) Patterns and editing. Ans:b

122. ___________ may be local or global.

 a)Code Optimization b) Variable

 c) Sub expression d) Patterns. Ans:a

123. “90-10” rule states that __________ of the time is spent in ___________ of the code.

 a)90%, 20% b) 80%, 10% c) 90%, 10% d) 90%, 90%. Ans:a

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

91

124. The important sources of optimization are the identification of common

 _____________.

 a)Regular expression b) Sub expression

 c) expression d) time. Ans:b

125. The term constant folding is used for the ____________________.

 a)Local optimization b) Code optimization

 c) Latter optimization d) Loop optimization. Ans:c

126. ____________ performed within a straight line and no jump.

 a)Local optimization b) Code optimization

 c) Latter optimization d) Loop optimization. Ans:a

127. From anyone in the loop to any other, there is a path of length one or more is

 __________.

 a)Weakly Connected b) Unique Entity

 c) Multi Connected d) Strongly Connected. Ans:d

128. If some sequences of statements from arithmetic progressions, we say such

 identifiers as ______________.

 a)Reduction b) Induction Variables

 c) Code motion d) Inner Loops. Ans:b

129. The replacement of an expensive operation by a cheaper one is called ____________

 in strength

 a) Reduction b) Induction Variables

 c) Code motion d) Inner Loops. Ans:a

130. Full form of DAG

 a)Dynamic acyclic graph b)Data acyclic graph

 c)Directed acyclic graph d)Detecting acyclic graph. Ans:c

131. A useful data structure for automatically analyzing basic block is a _____________.

 a)Dynamic acyclic grap b)Data acyclic graph

 c)Directed acyclic graph d)Detecting acyclic graph. Ans:c

132. Constructing a DAG from _________________ is a good way of determining common

 sub expression.

 a)2 address statement b) 4 address statement

 c) 3 address statement d) 5 address statement. Ans:c

133. ______________ are labeled by operator symbol.

 a) Nodes b) Leaves c) Interior Nodes d) Root Ans:c

134. Computed results can be left in ______________ as long as possible.

 a)Registers b) Triples c) Indirect Triples d) Quadruples. Ans:a

135. Initially the register descriptor shows that all registers as ____________.

 a)Full b) empty c) Half-filled d) None Ans:b

136. To keep track of the location __________is used.

 a)Flag register b) Address descriptor

 c) Allocation descriptor d) register. Ans:b

137. _____________ invoke a function GETREG ().

 a)Code optimization b) Code motion

 c) the code generation algorithm d) intermediate code. Ans:c

138. The DAG representation of a Quadruples is a __________.

 a)Nodes b) Leaves c) Tree d) Pattern. Ans:c

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

92

139. Multiple jumps are reduced accordingly to ______________.

 a)Local optimization. b) Code optimization

 c) Peephole optimization d) Latter optimization Ans:c

140. Loads and stores are reduced in ______.

 a) optimization b)peephole optimization

 c)latter optimization d)none Ans:b

Exercise

1. If W is a string of terminals and A, b are two non-terminals, then which of the

following are right-linear grammars?

(a) A Bw

(b) A Bw|w

(c) Awb|w

(d) None of the above

2. If a is a terminal and S, A, B are three non-terminals, then which of the following are

regular grammars?

(a) S  E

 A  aS|b

(b) A  aB|a

 B  bA|b

(c) A  Ba|Bab

(d) A  abB|aB

3. Representing the syntax by a grammar is advantageous because

(a) It is concise

(b) It is accurate

(c) Automation becomes easy

(d) Intermediate code can generated easily and efficiently

4. CFG can be recognized by a

(a) Push-down automata

(b) 2-way linear bounded automata

(c) Finite state automata

(d) None of the above

5. CSG can be recognized by

(a) Push-down automata

(b) 2-way linear bounded automata

(c) Finite state automata

(d) None of the above.

6. Choose the correct statements.

(a) Sentence of a grammar is a sentential from without any terminals.

(b) Sentence of a grammar should be derivable from the start state.

(c) Sentence of a grammar should be frontier of a derivation tree, in which the node has

the start state as the label

(d) All of the above.

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

93

7. A grammar can have

(a) A non-terminal A that can‟t derive any string of terminals.

(b) A non-terminal A that can be present in any sentential from

(c) E as the only symbol on the left hand side of a production

(d) None of the above.

8. A top-down parser generates

(a) Left-most derivation

(b) Right-most derivation

(c) Right-most derivation in reverse

(d) Left-most derivation in reverse

9. A bottom-up parser generates

(a) Left-most derivation

(b) Right-most derivation

(c) Right-most derivation in reverse

(d) Left-most derivation in reverse

10. A given grammar is said to be ambiguous if

(a) Two or more productions have the same non-terminal on the left hand side.

(b) A derivation tree has more than one associated sentence.

(c) There is a sentence with more than one derivation tree corresponding to it

(d) Parenthesis are not present in the grammar

11. The grammar E  E+E | E*E | a, is

(a) Ambiguous

(b) Unambiguous

(c) Ambiguous or not depends on the given sentence

(d) None of the above

12. Choose the correct statement

(a) Language corresponding to a given grammar, is the set of all strings that can be

generated by the given grammar.

(b) A given language is ambiguous if no unambiguous grammar exist for it.

(c) Two different grammars may generate the same language.

(d) None of the above.

13. Consider the grammar

S  ABSc | Abc

BA  AB

Bb  bb

Ab  ab

Aa  aa

Which of the following sentences can be derived by this grammar?

(a) abc

(b) aab

(c) abcc

(d) abbc

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

94

14. The language generated by the above grammar is the set of all strings made uo of a, b,

c, such that

(a) The number of a‟s, b‟s, and c‟s will be equal

(b) a‟s always precede b‟s

(c) b‟s always precede c‟s

(d) The number of a‟s b‟s and c‟s are same and the a‟s precede b‟s. Which precede c‟s.

15. In an incompletely specified automata

(a) No edge should be labelled E

(b) From any given state, there can‟t be token leading to two different states

(c) Some states have no transition on some tokens

(d) Start state may not be there

16. The main difference between a DFSA and an NDFSA is

(a) In DFSA, E transition may be present

(b) In NDFSA, E transition may be present

(c) In DFSA, from any given, there can‟t be alphabet leading to two different states.

(d) In NDFSA, from any given state, there can‟t be any alphabet leading to two different

states.

17. Two finite state machines are said to be equivalent if they

(a) Have the same number of stages

(b) Have same number of edges

(c) Have the same number states and edges

(d) Recognize the same set of tokens

18. Choose the correct answer.

FORTRAN is a

(a) Regular language

(b) Context-free language

(c) Context-sensitive language

(d) Turing language

19. If two finite states machine M and N isomorphic, then M can be transformed to N by

relabeling

(a) The states alone

(b) The edges alone

(c) Both the states and edges

(d) None of the above.

20. In a syntax directed translation scheme, if the value of an attribute of a node is a

function of the values of the attributes of its children, then it is called a

(a) Synthesized attribute

(b) Inherited attribute

(c) Canonical attribute

(d) None of the above.

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

95

21. Synthesized attribute can easily be simulated by an

(a) LL grammar

(b) Ambiguous grammar

(c) LR grammar

(d) None of the above

22. For which of the following situations, inherited attribute is a natural choice?

(a) Evaluation of arithmetic expressions

(b) Keeping track of variable declaration

(c) Checking for the correct use of L-values and R-values

(d) All of the above.

23. The graph depicting the inter-dependencies of the attributes of different nodes in a

parse tree is called a

(a) Flow graph

(b) Dependency graph

(c) Karnaugh‟s graph

(d) Steffi graph

24. Choose the correct statements.

(a) Topological sort can be used to obtain an evaluation order of a dependency graph.

(b) Evaluation order for a dependency graph dictates the order in which the semantic

rules are done.

(c) Code generation depends on the order in which semantic actions are performed.

(d) Only(a) and (c) correct.

25. A syntax tree

(a) Is another name for a parser tree

(b) Is a condensed form of parse tree

(c) Should not have keywords as leaves

(d) None of the above.

26. Syntax directed translation scheme desirable because

(a) It is based on the syntax

(b) Its description is independent of any implementation

(c) It is easy to modify

(d) Only (a) and (c) are correct.

27. Which of the following is not an intermediate code form?

(a) Postfix notation

(b) Syntax trees

(c) Three address codes

(d) Quadruples.

28. Three address codes can be implemented by

(a) Indirect triples

(b) Direct triples

(c) Quadruples

(d) None of the above.

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

96

29. Three address code involves

(a) Exactly 3 addresses

(b) At the most 3 addresses

(c) No unary operator

(d) None of the above.

30. Symbol table can be used for

(a) Checking type compatibility

(b) Suppressing duplicate error messages

(c) Storage allocation

(d) None of the above.

31. The best way to compare the different implementation of symbol table is to compare

the time required to

(a) Add a new name

(b) Make an inquiry

(c) Add a new name and make an inquiry

(d) None of the above.

32. Which of the following symbol table implementation is based on the property of locality

of reference?

(a) Linear list

(b) Search tree

(c) Hash table

(d) self-organization list

33. which of the following symbol table implementation is best suited if access time to be

minimum?

(a) Linear list

(b) Search tree

(c) Hash table

(d) self-organization list

34. which of the following symbol table implementation, makes efficient use of memory?

(a) List

(b) Search tree

(c) Hash table

(d) Self-organizing list.

35. Access time of the symbol table will be logarithmic, it is implemented by a

(a) Linear list

(b) Search tree

(c) Hash table

(d) Self-organizing list.

36. An ideal compiler should

(a) Detect error

(b) Detect and report error

(c) Detect, report and correct error

(d) None of the above.

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

97

51. Which of the following is not a source error?

(a) Faulty design specification

(b) Faulty algorithm

(c) Compiler themselves

(d) None of the above

52. Any transcription error can be repaired by

(a) Insertion alone

(b) Deletion alone

(c) Insertion and deletion alone

(d) Replacement alone.

53. Hamming distance is a

(a) Theoretical way of measuring errors

(b) Technique for assigning codes to a set of items known to occur with a given probability

(c) Technique for optimizing the intermediate code

(d) None of the above

54. Error repair may

(a) Increase the number of errors

(b) Generate spurious error messages

(c) Mask subsequent error

(d) None of the above

55. A parser with the valid prefix property is advantageous because

(a) It detects error as soon as possible

(b) It detects errors as and when they occur

(c) It limits the amount of erroneous output passed to the next phase

(d) All of the above.

56. The advantages of panic mode of error recovery is that

(a) It is simple to implement

(b) It is very effective

(c) It never gets into an infinite loop

(d) None of the above.

57. To recover from an error, the operator precedence parser may

(a) Insert symbols onto the stack

(b) Insert symbols onto the input

(c) Delete symbols from the stack

(d) Delete symbols from the input.

58. Which of the following optimization techniques are typically applied on loops?

(a) Removal of invariant computation

(b) Elimination of induction variables

(c) Peephole optimization

(d) Invariant computation

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

98

59. The technique of replacing run time computation by compile time computations is

called

(a) Constant folding

(b) Code hoisting

(c) Peephole optimization

(d) Invariant computation

60. The graph that shows the basic blocks and their successor relationship is called.

(a) Control graph

(b) Flow graph

(c) DAG

(d) Hamiltonian graph

61. Reduction in strength means

(a) Replacing run computation by compile

(b) Removing loop invariant computation

(c) Removing common sub-expression

(d) Replacing a costly operation by a relatively cheaper one

62. A basic block can be analysed by a

(a) DAG

(b) Graph which may involve cycles

(c) Flow-graph

(d) None of the above

63. ud-chaining is useful for

(a) Determining whether a particular definition is used anywhere or not

(b) Constant folding

(c) Checking whether a variable is used, without prior assignment

(d) None of the above

64. Which of the following concepts can be used to identify loops?

(a) Dominators

(b) Reducible graphs

(c) Depth first ordering

(d) None of the above

65. Which of the following concepts are not loop optimization tecniques?

(a) Jamming

(b) Unrolling

(c) Induction variable elimination

(d) None of the above

66. Running time of a program depends on the

(a) Way the registers are used

(b) Order in which computations are performed

(c) Way the addressing modes are used

(d) Usage of machine idioms

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

99

67. du-chaining

(a) Stands for use definition chaining

(b) Is useful for copy propagation removal

(c) Is useful for induction variable removal

(d) None of the above

68. Which of the following comments about peep-hole optimization are true?

(a) It is applied to a small part of the code.

(b) It can be used to optimize intermediate code

(c) To get the best out of this technique, it has to be applied repeatedly.

(d) It can be applied to a portion of the code that is not contiguous.

69. Shift-reduce parsers are

(a) Top-down parsers

(b) Bottom-up parsers

(c) May be top-down or bottom-up parsers

(d) None of the above

Compiler Design Concepts, Worked out Examples and MCQs for NET/SET

100

REFERENCES

[1] Alfred V. Aho and Jeffrey D. Ullman, “Principles of Compiler Design”, 1989.

[2] Y.N. Srikant and Priti Shankar, “The Compiler Design Handbook: Optimizations and

Machine Code Generation, Second Edition”, Dec 7, 2007.

[3] Adesh K.Pandey,” Concepts of compiler Design”, S.K.Kataria and ons publisher of

India Books, India

[4] Reinhard Wilhelm & Dieter Maurer,” Compiler Design”, Addion-Wesley, I edition

[5] Gajendra Sharma,” Compiler Design”, S.K.Kataria and ons publisher of India Books,

India

[6] K.Muneewaran,” Compiler Design”, Oxford University Press, 2012

[7] K.Krishnakumari,”Compiler Design”, ARS Publications,2013

[8] A.A.Puntambekar, “Compiler Design(Principles of Compiler Design), Technical

Publications, 2013

[9] Steven S.Muchnick,” Advanced Compiler Design Implementation”, Morgan Kaufman

Publisher,2012

[10] Alexander Meduna,”Elements of Compiler Design”, Auerbach Publication, 2009.

[11] G.Sudha Sadasivam,”Compiler Design”, Scitech Publication, 2009.

[12] P.Kalaiselvi, AAR Senthilkumaar,”Principles of Compiler Deign”,Charulatha

Publications,2013.

[13] https://www.tutorialspoint.com/compiler_design/

[14] http://www.dreamincode.net/forums/topic/260592-an-introduction-to-compiler-

design-part-i-lexical-analysis/

View publication statsView publication stats

https://www.tutorialspoint.com/compiler_design/
http://www.dreamincode.net/forums/topic/260592-an-introduction-to-compiler-design-part-i-lexical-analysis/
http://www.dreamincode.net/forums/topic/260592-an-introduction-to-compiler-design-part-i-lexical-analysis/
https://www.researchgate.net/publication/316560026

